A Trustworthy Middlebox-aware Networking Architecture

Hyunwoo Leesugen Zachary Smithggen 2, Selin Chung,g., !, and Ted “Taekyoung” Kwon!

I'Seoul National University, 2ZUniversity of Luxembourg
hwlee2014 @mmlab.snu.ac.kr, zach.smith@uni.lu, slchun@mmlab.snu.ac.kr, tkkwon@snu.ac.kr

1 Motivation

Using TLS middleboxes (a.k.a. TLS proxies) has
been problematic since splitting TLS connections in a
“middlebox-in-the-middle” fashion is risky [2, 3]. Cur-
rently, a TLS middlebox makes a TLS connection split (so,
called split TLS) to perform its functionality in-between
two endpoints. In particular, it intercepts a client’s Clien-
tHello addressed to the intended server and plays the role
of the server by performing a TLS handshake with the
client. For this purpose, a client-side middlebox (e.g.
an anti-virus software) uses a forged certificate (of the
intended server) signed by the custom root certificate pre-
installed on the client. Similarly, a server-side middlebox
(e.g. a website application firewall) uses a certificate taken
from the server for impersonation. In any case, a mid-
dlebox sends a ClientHello to the server, which initiates
another TLS handshake between the middlebox and the
intended server. The number of split TLS sessions can be
more than two since there can be multiple middleboxes
between the client and the server.

cient L Middlebox L % senver

Figure 1: A middlebox, such as an anti-virus software,
splits TLS into two separate TLS sessions, impersonating
the server in the middle of the client and the server.

Although the split TLS approach (as in Figure 1) helps a
middlebox intervene and process data on-the-fly, it breaks
the security requirements of TLS: entity authentication,
data secrecy, and data authentication. For instance, from
a client’s standpoint, data is encrypted only between the
client and the next middlebox; she has no idea of whether
her data will have confidentiality and integrity after the
next middlebox. Also, she cannot be assured of the au-
thenticity of the intended server.

Thus, the client is forced to trust the “secure” indica-
tor on her browser, even if the security is broken after
the next middlebox. We seek to address this problem by
making her explicitly aware of TLS interception [9]. Af-
ter she becomes aware of the middleboxes, there should
be a mechanism to manage the trustworthiness of the
middleboxes.

There are several studies related to this issue [1, 4, 7,
8, 10]. All the proposals have been discussing either a
certificate for a middlebox or a secure participation of a

middlebox in TLS. Less attention, however, has been paid
to how to address both issues together.

2 Middlebox-aware Architecture

Issue certificates

Middlebox

~— Register certificates
Monitor unknown certificate

with its naite- Monitor unknown certificates
oo T~ issued by its hame
mists — ~
\

~_ (
Audit/Monitor certificates and behaviors ~_ ‘

/e//
ite€ timestamps

Report MB'’s misbéhavior

Middlebox
Auditor (MA)

N
eédgack*MB’s misbehavior

.
Report MB's misbehavior_ ~

[V T—

Middleboxes (MBs)
Exchange data with middlebox-aware TLS (maTLS)

Figure 2: Our architecture seeks to ensure end-to-end
secure connections through explicit authentication and
modification check of each middlebox.

To this end, we propose a trustworthy middlebox-aware
networking architecture as in Figure 2. The key concept
of the architecture is trustworthiness management of mid-
dleboxes, which is substantiated by extending TLS in a
middlebox-aware fashion (dubbed maTLS).

We define the trustworthiness of a middlebox as public
auditability. Thus, trustworthiness management is a way
to make a middlebox auditable in terms of its certificate
and its read/write permission. This is feasible by intro-
ducing two mechanisms: (i) explicit authentication of a
middlebox by its certificate, and (ii) permission check on
a packet modification by a middlebox.

Explicit authentication: Every middlebox has its cer-
tificate that lists its publisher, its role, its read/write per-
mission, and other fields. A certificate authority issues a
middlebox certificate to a middlebox publisher and logs
the certificate in a ‘middlebox transparency,” which is
audited by a middlebox auditor. (Note that the middle-
box transparency is similar to the certificate transparency
[5].) This certificate is used to authenticate the middlebox
in maTLS. By verifying all the relevant certificates with
signed certificate timestamps [5] during a maTLS hand-
shake, a client can identify all intermediate middleboxes
participating in the maTLS session.

Modification check: In the maTLS protocol, when-
ever a participating middlebox modifies a packet, it
records this operation by adding a message authentica-



tion code (using a key established during the maTLS
handshake). From the record of packet modifications,
the client figures out all intermediate writers and detects
invalid modifications by cross-checking the permission
information in their certificates. The client may report
invalid modifications to the auditor via an out-of-band
channel. The auditor checks the corresponding certificate
for the invalid modification, whose result is notified to the
middlebox publisher and the certificate authority.

Client Server

—

The first

round-trip
2

The second
round-trip

(a) maTLS handshake. The client authenticates the
server/middlebox(es) by their certificates, confirms TLS ver-
sions/ciphersuites of each session, and establishes the keys for
message authentication codes with the server and the middle-
box(es).

Client Server

* m,: message from Server / m,: message modified by MB2 / MAC: message authentication code

(b) maTLS record. The client verifies the sender and the inter-
mediate writer by their message authentication codes.

Figure 3: Middlebox-aware TLS protocol overview

We design maTLS based on the modified security
requirements of TLS. Entity authentication becomes
server/middlebox authentication; data secrecy is extended
to path secrecy; and data authentication is divided into
data source authentication and modification accountabil-
ity. The high-level overview of maTLS is shown in Fig-
ure 3.

Server/Middlebox authentication: A client authenti-
cates the server and the middlebox(es) by their certificates.
This prevents any untrusted middlebox from participating
in a maTLS session.

Path secrecy: A client is aware of all the split sessions
and can abort the connection if any split session with a
low version or weak ciphersuite exists. This defends the
client from passive attackers in every split session.

Data source authentication: A client confirms the
message comes from the server without any invalid modi-
fications, by checking the server’s message authentication
code. This prevents an active attacker from tampering the
message.

Modification accountability: A client confirms any
modifications are written by authorized middleboxes, by

checking the writers’ message authentication codes. This
defends the client against an active attacker’s modifica-
tion.

3 Future Work

To demonstrate the feasibility of our architecture, we
plan to perform two main tasks: formal verification and
evaluation. We will prove the security of maTLS with
the state-of-the-art formal verification tool Tamarin [6].
This will improve our protocol by identifying any security
flaws based on the security requirements. Further, we
will implement our architecture in C with the OpenSSL
library and evaluate the performance overhead in terms
of delay and memory usage of participating parties.

4 Conclusions

In this proposal, we design a trustworthy middlebox-
aware networking architecture, whose main concept is the
trustworthiness management of middleboxes in an open
fashion. By verifying their certificates and read/write
permission, the proposed architecture can enhance the
security of end-to-end TLS communications in presence
of middleboxes.

References
[1] D. MCGREW, D. WING, Y. N. P. G. Tls proxy server extension.
Internet-Draft draft-mcgrew-tls-proxy-server-01, IETF.

[2] DE CARNAVALET, X. D. C., AND MANNAN, M. Killed by proxy:
Analyzing client-end tls interception software. In Network and
Distributed System Security Symposium (2016).

[3] DURUMERIC, Z., MA, Z., SPRINGALL, D., BARNES, R., SUL-
LIVAN, N., BURSZTEIN, E., BAILEY, M., HALDERMAN, J. A_,
AND PAXSON, V. The security impact of https interception. In
Network and Distributed Systems Symposium (2017).

[4] HAN, J., KiM, S., HA, J., AND HAN, D. Sgx-box: Enabling
visibility on encrypted traffic using a secure middlebox module.
In Proceedings of the First Asia-Pacific Workshop on Networking
(2017), ACM, pp. 99-105.

[5] LAURIE, B., LANGLEY, A., AND KASPER, E. Certificate trans-
parency. Tech. rep., 2013. RFC 6962, IETFE.

[6] MEIER, S., SCHMIDT, B., CREMERS, C., AND BASIN, D. The
tamarin prover for the symbolic analysis of security protocols. In
International Conference on Computer Aided Verification (2013),
Springer, pp. 696-701.

[71 NAYLOR, D., L1, R., GKANTSIDIS, C., KARAGIANNIS, T., AND
STEENKISTE, P. And then there were more: Secure commu-
nication for more than two parties. In Proceedings of the 13th
International Conference on emerging Networking EXperiments
and Technologies (2017), ACM, pp. 88—100.

[8] NAYLOR, D., SCHOMP, K., VARVELLO, M., LEONTIADIS,
1., BLACKBURN, J., LOPEZ, D. R., PAPAGIANNAKI, K., RO-
DRIGUEZ RODRIGUEZ, P., AND STEENKISTE, P. Multi-context
tls (mctls): Enabling secure in-network functionality in tls.
In ACM SIGCOMM Computer Communication Review (2015),
vol. 45, ACM, pp. 199-212.

[9] RuoTl, S., O’NEILL, M., ZAPPALA, D., AND SEAMONS, K. E.
User attitudes toward the inspection of encrypted traffic. In SOUPS
(2016), pp. 131-146.

[10] S. LORETO, J. MATTSSON, R. S. H. S. G. G. D. D. Ex-
plicit trusted proxy in http/2.0. Internet-Draft draft-loreto-httpbis-
trusted-proxy20-01, IETF.



