
Analyzing Spatial Differences
in the TLS Security of Delegated Web Services

Joonhee Lee∗
Seoul National University
Seoul, Republic of Korea

hello82@snu.ac.kr

Hyunwoo Lee
Purdue University

West Lafayette, Indiana, USA
lee3816@purdue.edu

Jongheon Jeong
Seoul National University
Seoul, Republic of Korea
jjong0025@snu.ac.kr

Doowon Kim
University of Tennessee, Knoxville

Knoxville, Tennessee, USA
doowon@utk.edu

Ted “Taekyoung” Kwon
Seoul National University
Seoul, Republic of Korea

tkkwon@snu.ac.kr

ABSTRACT
To provide secure content delivery, Transport Layer Security (TLS)
has become a de facto standard over a couple of decades. However,
TLS has a long history of security weaknesses and drawbacks. Thus,
the security of TLS has been enhanced by addressing security prob-
lems through continuous version upgrades. Meanwhile, to provide
fast content delivery globally, websites (or origin web servers) need
to deploy and administer many machines in globally distributed
environments. They often delegate the management of machines to
web hosting services or content delivery networks (CDNs), where
the security configurations of distributed servers may vary spatially
depending on the managing entities or locations.

Based on these spatial differences in TLS security, we find that
the security level of TLS connections (and their web services) can
be lowered. After collecting the information of (web) domains that
exhibit different TLS versions and cryptographic options depending
on clients’ locations, we show that it is possible to redirect TLS
handshake messages to weak TLS servers, which both the origin
server and the client may not be aware of. We investigate 7M
domains with these spatial differences of security levels in the wild
and conduct the analyses to better understand the root causes of
this phenomenon. We also measure redirection delays at various
locations in the world to see whether there are noticeable delays in
redirections.

CCS CONCEPTS
• Security and privacy→ Network security.

KEYWORDS
domain name delegation; downgrade attack; TLS deployment

∗Also with Korea Financial Telecommunications & Clearings Institute.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3453107

ACM Reference Format:
Joonhee Lee, Hyunwoo Lee, Jongheon Jeong, Doowon Kim, and Ted “Taeky-
oung” Kwon. 2021. Analyzing Spatial Differences in the TLS Security of
Delegated Web Services. In Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security (ASIA CCS ’21), June 7–11, 2021,
Virtual Event, Hong Kong. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3433210.3453107

1 INTRODUCTION
Transport Layer Security (TLS) [31, 32] is designed for secure com-
munications on the Internet. It is being used for most web-based
services. The ratio of TLS encrypted traffic has been increasing
rapidly; according to the Google’s Transparency Report [18], 96
percent of web pages loaded by Chrome are encrypted with HTTPS
as of July 2020. However, TLS is not a perfectly secure protocol.
Since SSL 2.0 [15] was published in 1995, TLS/SSL have exposed
various vulnerabilities such as weak cryptographic algorithms (e.g.,
[5, 16, 24, 28, 38, 39]) and have been constantly attacked (e.g.,
BEAST [12], CRIME [34], BREACH [17], Lucky Thirteen [4], Heart-
bleed [13], POODLE [26], FREAK [7], Logjam [3], DROWN [6], and
SLOTH [8]).

TLS has been evolving and becomes more secure by solving or
mitigating such security problems through continuous version up-
grades [20]. The latest TLS version is 1.3 [31] that was redesigned
and approved in August 2018. For example, it mandates perfect
forward secrecy by allowing only ephemeral keys during the ECDH
key agreement. Also, it extends the length of the handshake tran-
script against the hash collision attacks. It was reported that only
approximately 31 percent of the Alexa Top 1M domains support TLS
1.3 as of November 2019 [19]. In other words, the other web servers
(approximately 69%) still rely on lower TLS versions, which may
be subject to old-version TLS attacks. This indicates that keeping
the TLS protocol up-to-date is the key challenge for providing web
services securely. Considering the history of TLS security issues,
threats to TLS may continue to emerge, and even cryptographic al-
gorithms currently known to be secure may not be safe in the future
(e.g., quantum computing is deployed). That is why web server op-
erators are required to vigilantly monitor emerging vulnerabilities
and continue to upgrade TLS versions and security settings.

Apart from this security aspect, the scale of web services is
growing exponentially. While there are still small-scale services for
local users, global services targeting numerous users around the

https://doi.org/10.1145/3433210.3453107
https://doi.org/10.1145/3433210.3453107
https://doi.org/10.1145/3433210.3453107

world continue to emerge and proliferate—e.g., online social net-
works such as Twitter, Facebook, and Instagram, or video streaming
websites such as Youtube and Netflix. These services need to de-
liver content with low delay for geographically dispersed users,
which may not be achieved simply by operating large data centers.
Thus, domain owners typically rely on third parties for optimized
delivery, such as Content Delivery Networks (CDNs). CDNs de-
ploy geographically scattered edge servers all over the world to
deliver web content to worldwide users on behalf of the domain
owners. In this case, the domain owner must delegate to a third
party the commitment to keep the end-to-end security for content
delivery up-to-date. The delegation of these server management
responsibilities may lead to other security threats.

In this paper, we present a new threat model where an adversary
can trick web clients into handshaking with vulnerable servers with
lower TLS versions (say, weakened ciphers) if the domains that the
clients attempt to access are served from multiple TLS servers with
different TLS security settings. Specifically, a Man-in-the-Middle
attacker can redirect the clients’ connection requests to vulnerable
TLS servers even if the clients are supposed to establish connections
with TLS servers with secure TLS parameters. We examine more
than 7M domains from multiple vantage points across different
continents and find that 28,956 domains in the wild exhibit different
TLS configurations depending on the locations of the clients. To
the best of our knowledge, this paper is the first to investigate
the spatial differences in the TLS security settings of distributed
delegated Web servers.

To better understand the root causes of such spatial differences,
we also propose a new method to identify how the web servers of
insecurely-configured domains are managed. In addition, we mea-
sure to what extent the time to establish a TLS session is lengthened
if a TLS session is redirected to insecurely-configured servers. The
result demonstrates the overhead latency of the redirection is not
so substantial; that is, clients may not be aware of being redirected.

In summary, our contributions are as follows:
(1) Presenting a new threat model to weaken the security level of web
services (Section 3): We design an infrastructure under an adver-
sary’s control that leverages the spatial differences in TLS security
settings, due to the faulty or outdated management of server-side
TLS configurations. We elaborate on (i) how to gather information
(e.g., IP addresses, TLS versions, ciphersuites, etc.) of web servers,
and (ii) how an adversary can obtain the sensitive information of
clients.
(2) Experimentation and analysis on real-world web services (Sec-
tion 4): We conduct experiments to see if web services in the real-
world show inconsistencies in TLS security settings depending on
the clients’ geographical locations. To better understand the rea-
sons of the vulnerable domains, we provide a method of identifying
how these web servers are managed. From the analysis, we find
that about 25% of the insecurely-configured domains rely on CDNs.
(3) Measurement of redirection delays (Section 5): To show the feasi-
bility of our threat model, we measure the overhead (i.e., network
latency) incurred by redirection to servers located in different con-
tinents. Interestingly, an increased time to establish a TLS session
with a vulnerable domain is less than 1 second at most; thus, the
redirection may go unnoticed by users.

In the rest of the paper, we first present the background in Sec-
tion 2, followed by description of our methodology in Section 3.
Next, we analyze the experiment results in the real-world in Sec-
tion 4 and evaluate the latency of the redirection from a user’s
perspective in Section 5. Then, we discuss the further issues in Sec-
tion 6 and the related work in Section 7, respectively. We finalize
this paper with concluding remarks in Section 8.

2 BACKGROUND
2.1 TLS Handshakes and Downgrade Attacks

Agreement on the version and ciphersuite. Transport Layer
Security (TLS) [31, 32] is a protocol designed to provide secure
communications between two entities (e.g., a web server and its
client) over the untrusted Internet. In a TLS handshake, a server
and a client negotiate parameters (TLS version, ciphersuites, etc.)
for cryptographic communications, and the server is authenticated
(the client authentication is optional). The TLS handshake makes
an agreement between the two entities on a TLS protocol version
and a ciphersuite. The TLS protocol version should be selected
between 1.0 and 1.3 under mutual agreement. The TLS ciphersuite
is a combination of asymmetric cipher and key types, key exchange
algorithms, symmetric ciphers and key, hash algorithms, etc. The
clients send the highest TLS version they can support and a list
of possible ciphers in the ClientHello message. The server then
selects the highest TLS version and the ciphersuite that both can
support. Such selections are specified in the ServerHello hand-
shake message. Subsequently, the other handshake messages are
exchanged according to the agreed TLS version, and key materials
are also exchanged by the determined ciphersuite, and finally the
TLS session is initiated.

Downgrade attack. The biggest drawback in this bilateral pro-
tocol agreement is that the higher security level on one side has
to be degraded to meet the lower one on the other side. For exam-
ple, if a client provides only vulnerable hash algorithms, such as
MD5 [33, 39], in the ClientHellomessage, the server has no choice
but to choose the vulnerable one. This results in lower security level
between the client and the server, and the attacker can exploit vul-
nerabilities in weak cryptographic algorithms or the older TLS
version (say, TLS 1.0, 1.1, or 1.2), which is called a downgrade attack.
Such attacks, which force two endpoints to use an insecure channel,
are still one of the most threatening methods of attacks against
TLS. There are many well-known TLS downgrade attacks including
POODLE [26], FREAK [7], Logjam [3], DROWN [6] and SLOTH [8].

On the contrary, even though the client uses the latest web
browser that fully supports the latest TLS protocol (say TLS 1.3)
and strong ciphersuite, the client can still be vulnerable against the
downgrade attacks if the server supports only older TLS version
and weaker ciphersuite. The TLS connection between the client and
the server is established with insecure parameters and hence the
connection becomes vulnerable. Accordingly, the adversary may be
able to perform a man-in-the-middle (MitM) attack by exploiting
the vulnerability.

Although there have been many reports of vulnerabilities of pro-
tocol designs or client implementations that enable such downgrade

attacks, we present a novel approach that takes advantage of vul-
nerabilities of server-side configurations in distributed environments,
which has not been reported.

2.2 CDN Redirection
A Content Delivery Network (CDN) is a geographically distributed
network of edge servers, which delivers content to a client on behalf
of an origin server. CDNs help reduce content delivery delays since
the client retrieves the content from a physically close edge server.
Specifically, a CDN replicates the content of the origin server to
a network of edge servers geographically scattered at different
locations. When the client attempts to access the origin server, the
CDN redirects the request to an edge server located physically
closer to the client in two ways: (1) DNS-based mapping and (2)
anycast routing.

(1) DNS-based mapping is a method of assigning a group of edge
servers to the clients based on the location of the client’s local DNS
resolver. The domain owner (i.e., the owner of the origin server)
can delegate its name resolution to a CDN service provider via
CNAME or NS records. Then the CDN’s DNS server responds to a
client with an appropriate A record considering the client’s location.
Note that the CDN’s DNS server is informed of the client’s location
using the EDNS Client Subnet [10] field to enhance the location
proximity of the client’s local DNS resolver.

(2) Anycasting is a network routing mechanism in which a
single IP address is mapped to multiple endpoints (i.e., multiple
edge servers in the CDN context). For example, Cloudflare, a
CDN service provider, leverages this anycast routing to redirect
HTTP requests from users around the world. When a user sends
a packet whose destination IP address corresponds to a domain
name managed by Cloudflare, the IP routing delivers the packet
to a topologically-nearest edge server of the anycast group by the
Border Gateway Protocol (BGP).

Many global web services rely on CDNs, and we argue that it
is necessary to understand the redirection mechanism of CDNs in
order to better understand the root causes of the spatial differences
of TLS security settings we have discovered. For this, we trace how
HTTPS requests for vulnerable domains are redirected and why
our method is effective.

3 NEW ATTACK MODEL
In this section, we present a new threat model where an adversary
downgrades a TLS version or its ciphersuite by exploiting the spa-
tial differences in the TLS security configuration settings across
distributed CDN edge servers.

3.1 Overview
An adversary’s goal is to obtain the sensitive information of users
(e.g., passwords or web cookies) heading to the target web server.
The capability that the adversary needs to have for this goal is
having distributed proxies under their control running around the
world.

Specifically, the adversary intercepts packets between clients
and web servers, and break confidentiality using the known TLS
attacks as described in Section 7. To this end, the adversary first
compromises or deploys a network node (close to a client) such

Adversary’s
InfrastructureEdge Server A

(Originally Assigned)

Victim

Edge Server B
(Weak TLS Configuration)

CDN’s Edge Servers
(Hosting same domain)

Redirected Flow
Original Flow

Collecting
Local Data Database

Sharing

Figure 1: An infrastructure under the adversary’s control—
The adversary aims to obtain sensitive information of a
client destined to target web servers. We assume that the
adversary runs an infrastructure that consists of WiFi APs
and proxies throughout the world. Each proxy in the infras-
tructure plays the two main roles: (i) collecting information
about a target web server (e.g., TLS security parameters) and
(ii) redirecting TLS messages to an insecure server in a par-
ticular region.

as a WiFi Access Point (AP) to eavesdrop and to tamper with the
packets exchanged between the clients and servers. For example,
the adversary can install a WiFi access point with an attractive SSID
(e.g., Free WiFi) in public (e.g., at a shopping mall). We also assume
that the adversary runs proxies throughout the world; for instance,
the adversary can purchase AWS instances from several regions, or
manage machines to build their own infrastructure as illustrated
in Figure 1. Using their global scale infrastructure, the adversary
(e.g. a WiFi AP) can forward packets to any arbitrary proxies under
their control. On the other hand, we assume the adversary cannot
break cryptographic primitives such as AES. Furthermore, the ad-
versary cannot compromise endpoints such as web browsers and
web servers; thus, the TLS protocol is correctly performed.

With the above capabilities, the adversary can obtain the client’s
sensitive information in the three steps, which is illustrated in
Figure 2. As illustrated in Figure 2a, the adversary’s infra first
gathers the list of potential target domains—e.g., fromAlexa 1Mweb
domains—whose content is delivered from multiple edge servers
if they rely on CDN services. Note that some of edge servers may
have potential TLS vulnerabilities (see Section 3.2). Then, as shown
in Figure 2b, the adversary’s infra (e.g., a WiFI AP) intercepts the
TLS handshake messages, which will be redirected to vulnerable
edge servers through their infrastructure (see Section 3.3). Finally,
the adversary infra uses any known attack mechanisms against
a downgraded session to steal sensitive information as illustrated
in Figure 2c (see Section 3.4).

3.2 Populating Target Database
As a preliminary step, the adversary should find out domains and
their corresponding edge servers with weak TLS settings, which
allows him (i) to redirect victims to the vulnerable edge servers
located in some distant regions and (ii) to conduct MitM attacks
against the victims.
Target domains & IP addresses. An adversary can target any
clients and perform the redirection. For an unspecified target, they
periodically can scan some of the domain names (e.g., Alexa 1M

Frequently
Visited Domain

example.com

…

…

https

IP
Addresses

1.2.3.4

5.6.7.8

…

TLS
Version

TLS
Ciphersuites

1.3 A, B, C

1.2 B, D, E

… …

Data by
Locations

us-west

europe

…

us-west

(a) Collecting the information of vulnerable TLS servers (i.e., pop-
ulating a Target Database): First, the adversary determines a target
domain list. Second, the adversary queries DNS servers and logs
the TLS versions and ciphersuites in each region. Finally, the ad-
versary builds a merged database by combining the log data from
different locations.

https

R
ED

IR
EC

T Strong
Edge Server

Weak
Edge Server

Adversary’s
Proxy Network

CDN’s
Edge Servers

Continent A

Continent B

(b) Handshake redirection: The adversary can redirect a client’s
request to a vulnerable TLS server possibly located in another
continent (e.g., downgraded TLS version or weakened ciphersuite)
through the infrastructure.

Downgraded TLS Session

Known
TLS Attacks

Sensitive
Information

Unmanipulated
Web Page

(c) Downgraded session exploitation: The adversary can success-
fully perform one of known attacks against the downgraded or
weakened TLS sessions and steal sensitive information.

Figure 2: The methodology of downgrading TLS security is
illustrated in three steps.

domains) to build a list of vulnerable domains. If a particular client
is targeted, the database can be populated by continuously scanning
only the websites that the client frequently visits.

Once the target domains are determined, the adversary collects
the IP addresses that correspond to the domains. A domain may
have multiple corresponding IP addresses. For example, a global
website may have multiple IP addresses since it relies on multiple
servers for load balancing or service stability/availability, or dele-
gates fast content delivery to CDNs. Thus when multiple clients

access the same website, they may connect to (machines with) dif-
ferent IP addresses depending on their locations. Therefore, the
adversary should query multiple DNS servers at multiple vantage
points—e.g., across different continents, and log the target domains
and their IP addresses into the Target Database as illustrated in Fig-
ure 2a.

TLS versions and ciphersuites. After obtaining the target do-
mains and their IP addresses, the adversary now finds vulnerable
edge servers with older TLS versions and weak cryptographic al-
gorithms that can be exploited to conduct a MitM attack against
target victims. To investigate the TLS configurations, the adversary
first sends ClientHello messages to the IP addresses of the target
domains, and receives ServerHello messages. This process allows
the adversary to figure out the TLS version and the ciphersuite
supported by each edge server. Note that the adversary’s goal is
to find vulnerable TLS servers around the world for the same do-
main name. If the adversary can find lower TLS versions and weak
cryptographic algorithms from ServerHellomessages from target
domains, he records the vulnerable versions and cipher algorithms
of the TLS servers to the log.

3.3 TLS Handshake Redirection
Recall that the adversary cannot decrypt the ciphertext part of the
TLS messages. Therefore, they can see only the unprotected TCP/IP
headers. The adversary can obtain the IP addresses and domains
from TLS handshake messages that the victims send as follows.
When a client accesses an HTTPS website, a TCP connection is
first established and then TLS handshake messages are exchanged
between the client and the web server. The attacker can obtain the
destination IP address from the message headers, and also learn
the domain name of the website by looking at the Server Name
Indication (SNI) [1] TLS extension in the ClientHello message.
The SNI extension is a technique that specifies the domain name
to which the TLS client wants to connect, which is necessary if
the server machine hosts multiple web servers (with their TLS
certificates) in its IP address.

The attacker looks for the IP addresses and/or domains in the
Target Database to see if a website with which the victim commu-
nicates has any vulnerable edge servers. If found, it means that the
victim can be redirected to a vulnerable TLS server (with the same
domain name) instead of the one with which the victim is supposed
to set up a TLS connection. The victim may be unaware of being
redirected to another IP address (i.e., for the same web server) since
a legitimate website is connected, its certificate is valid, and its
authentic webpages are displayed.

For example, suppose that a client in France accesses exam-
ple.com, which relies on the CDN service. Hence its content is
replicated to edge servers of the CDN service provider across the
world. The client is supposed to access to one of the edge servers
located physically closer to its location in France. The adversary
learns that one of the web servers located in the US runs with an
older TLS version and weak cryptographic algorithms, which is
vulnerable to known TLS attacks (e.g., POODLE [26] and Lucky
Thirteen [4]). Then, the adversary can manipulate the IP header
or perform DNS spoofing to redirect the client’s access request to
the vulnerable server. DNS spoofing or DNS cache poisoning [36]

makes clients to connect to a malicious machine (for a given do-
main) by taking advantage of the fact that DNS records are cached
by a local DNS resolver. Since the adversary knows the vulnerable
domains and its IP addresses in advance, they can redirect the client
by spoofing the cached DNS records.

A client cannot recognize that they are redirected to another
server since the authentic web pages of example.com are shown,
which is expected. The TLS connection between the client and
the insecure TLS server thus becomes vulnerable to the known
TLS attacks. In this way, the adversary may successfully obtain the
sensitive information of the client (i.e., victim).

If the network delay caused by such redirection is not significant,
victims would not recognize whether they have been attacked.
To understand to what extent the delay occurs, we quantify the
increased latency due to the attack in Section 5. Note that it is not
necessary to redirect all the TLS handshake messages. For example,
suppose the purpose of the adversary is to leak a login password
from the user who accesses example.com, which operates a login-
purpose subdomain named login.example.com. Then, the attacker
needs to redirect handshake messages only for the domain name
being login.example.com, and the other handshake messages need
not to be redirected, which can significantly reduce the overall
network latency.

3.4 Downgraded Session Exploitation
After making the victim perform a TLS handshake in a vulnerable
version or ciphersuite, the known attacks mentioned in Section 7
can be applied to the encrypted session. For example, if a TLS
session is downgraded to TLS 1.0, the adversary can conduct the
POODLE or BEAST attack. If the adversary deceives the server
and the client to agree with the ciphersuite including vulnerable
hash algorithms such as SHA-1 or MD5, he can use the SLOTH
attack. TLS 1.2 has been recognized as relatively safe until recently,
but several problems exist including the forward secrecy issue. In
addition, new attack techniques targeting TLS 1.2 (e.g., Raccoon
Attack [25]) can emerge anytime.

Different edge servers may have different ciphersuites even if
they support the same TLS version. Known attacks can be executed
if a deprecated or vulnerable crypto algorithm remains. For example,
if the TLS session is downgraded to 1.2 and the RSA key exchange
algorithm can be used, forward secrecy is no longer guaranteed.

3.5 Summary
To summarize, an adversary can (i) populate the IP addresses of
vulnerable TLS servers (of targeted domains) and their TLS security
settings, and (ii) redirect clients’ TLS handshake messages to the
vulnerable servers, then (iii) obtain the users’ sensitive information
by conducting known TLS attacks on downgraded sessions. In
the next section, we will investigate the effect in the real world,
especially regarding steps (i) and (iii). Then, we will evaluate how
this redirection affects user experiences.

4 REAL-WORLD EXPERIMENTS
In this section, we examine real-world web services and analyze the
results. To this end, we perform the first step of our methodology
(Section 3.2) and find vulnerable domains in the wild. Then, we

Table 1: Summary of our datasets—We used Rapid7 to ana-
lyze our target domains, which results in 7M target domains.
To obtain the TLS version and security parameters of the 7M
target domains, we implement our own TLS client, which
sends/receives ClientHello/ServerHello messages to/from the
domains. We also use ActiveDNS (782M DNS records) to find
additional vulnerable TLS servers in the wild.

Dataset Description Source # of Records

Target
domains Domain names Rapid7 [30] 7,032,829

Hello
messages

TLS versions & secu-
rity parameters & IP
addresses

Our TLS 1.3 client
(from six vantage
points)

42,196,974

DNS
records

Mappings between
IP addresses and do-
main names

ActiveDNS [21] 782,446,164

study how web servers are managed to better understand why the
spatial differences exist.

4.1 Data Collection
We collect three types of datasets as summarized in Table 1: target
domains, ClientHello/ServerHello messages, and additional DNS
records.
Target domains. We need a list of domains in the wild to measure
how many domains and their vulnerable TLS servers exist. We first
make the list of the target domains by extracting CommonNames
from their TLS certificates collected by Rapid7 [30] on June 16th,
2020. For wildcard names, we remove asterisks from names, which
results in apex domains. Then we perform nslookup on the apex
domains. If nslookup returns NXDOMAIN, we prepend www to
the domain name, which is added to the list. We do not add Com-
monName to the list if they are IP addresses or irrelevant FQDNs.
After performing these steps, we obtain 7,032,829 domains.
ClientHello/ServerHello messages. Recall that our method re-
quires the information of the TLS versions and ciphersuites of TLS
servers. To obtain such information, we implement a TLS 1.3 client
application based on OpenSSL-1.1.1g, which sends ClientHello, re-
ceives ServerHello, and terminates a connection. These messages
are recorded with the server’s IP address. We access the 7M do-
mains with our client applications located at six vantage points: six
cities in five continents—Asia (India, South Korea), Europe (France),
North America (US West), Oceania (Australia), and South America
(Brazil).
Additional DNS records. The collection of 7M domains does not
cover the entire web, and thus we may need to extend our coverage
of domains. Considering that a general edge server may host multi-
ple domains in a single machine or IP address, it is worth revisiting
the IP addresses of vulnerable domains that we already discovered.
To find more vulnerable domains, we use ActiveDNS [21], an active
DNS probing project, that actively queries DNS servers for domains
in the wild and collects DNS records such as IP addresses and do-
main names. We obtain total 782,446,164 DNS records on July 17th,

Table 2: Types of vulnerable domains

Downgraded TLS Version # of Domains

TLS1.3 → TLS1.2 17,740 (80.98%)
TLS1.3 → TLS1.1 7 (0.03%)
TLS1.3 → TLS1.0 452 (2.06%)

TLS1.2 → TLS1.1 73 (0.33%)
TLS1.2 → TLS1.0 3,648 (16.65%)

TLS1.1 → TLS1.0 15 (0.07%)

Total (Excl. duplicates) 21,907 (100%)

(a) Downgraded TLS Version—For example, TLS1.3 → TLS1.0 indi-
cates that among TLS servers for a domain, one server supports the
highest TLS version 1.3 while another supports the lowest version
1.0. This means that the domain is vulnerable since clients can be
redirected to the server with vulnerable TLS 1.0.

Weakened Ciphersuite # of Domains

Forward secret→ Non-forward secret
(e.g., ECDHE/DHE → RSA) 1,618 (9.95%)

Non-deprecated→ Deprecated
(e.g., SHA256/SHA384→ SHA1) 4,735 (29.11%)

Larger key → Shorter key
(e.g., AES 256bit→ AES 128bit) 12,107 (74.43%)

Total (Excl. duplicates) 16,267 (100%)

(b) Weakened Ciphersuite—Some TLS servers may still rely on
weak ciphersuites. For example, a domain hasmultipleweb servers
located around the world. One server supports forward secrecy,
while another does not.

2020 from ActiveDNS. After finding out the IP addresses of the
TLS servers vulnerable from the first dataset (7M domains), we
find 272,406 additional domains, which are potentially vulnerable,
mapped to those vulnerable IP addresses on the DNS records.

4.2 Vulnerable Domains
As specified in Section 4.1, we connect the 7M domains from the six
vantage points to find vulnerable domains. We claim that a domain
is vulnerable if either of the two following conditions is satisfied:

• Downgraded TLS Version: A TLS session from at least
one vantage point is established with a lower TLS version,
compared with other vantage points. For example, some
points support the latest version TLS 1.3, while at least one
of the other points supports only the vulnerable TLS 1.0.

• Weakened Ciphersuite: A TLS session from at least one
vantage point is established with a non-forward secret, a
deprecated, or a shorter key algorithm, compared with other
vantage points that support strong ciphersuites.

In this regard, we find total 28,956 vulnerable domains from
ClientHello/ServerHello messages. The breakdown of the results is
shown in Table 2, which leads to the following observations:

First, 21,907 domains have some edge servers with downgraded
TLS versions. Given the size of the entire dataset, it may not be a

Downgraded Version
Weakened Ciphersuite
Total (Excl. duplicates)

Vu
ne

ra
bl

e
D

om
ai

ns
 R

at
io

 (%
)

0

0.2

0.4

0.6

0.8

1.0

Alexa Top Rank
1M 100K 10K 1K 100

Figure 3: The ratio of vulnerable domains to the given set of
domains increases as the ranks of Alexa top sites (i.e., the
given set of domains) go higher.

threatening number. However, as Figure 3 shows, more popular
domains are more likely to be vulnerable to the redirection attacks.
This means that global scale web services are required to operate
more servers in more distributed areas for quality of service, re-
sulting in possibly more spatial differences. Also, surprisingly, TLS
1.0 servers (4,115, 18.78%) are still being in use. Most of domains
have their TLS servers (17,740, 80.98%) use TLS 1.3 or TLS 1.2. The
wide usage of old TLS versions highlights the vulnerability to the
redirection attack. That is, an adversary may be able to perform
known attacks to those “downgradable” domains.

Second, an adversary can weaken the security of the TLS sessions.
We find that an adversary can make clients have TLS sessions with-
out forward secrecy for 1,618 domains by changing the (EC)DHE-
related ciphersuite to the RSA-related ciphersuite. Furthermore,
4,735 domains have some TLS servers that can be weakened from
the SHA256/SHA384-related ciphersuite to the SHA1-related ci-
phersuite. An adversary can also decrease the key size from 256
bits to 128 bits used for the AES algorithm for 12,107 domains.

Third, we observe that some of vulnerable domains may allow
attackers to obtain sensitive user data. For example, 91 domain
names include login and 282 domain names contain auth or account
or sso. Furthermore, 6,429 domain names start withmail orwebmail
or email, and 398 domain names start with admin. It implies that
many of the vulnerable domains that we have found are dealing
with sensitive information.

Lastly, our collected 7M domains cannot cover the entire Web.
To find more vulnerable domains that we may miss from the 7M
domain dataset, we use ActiveDNS that provides 782M domains
and its associated IP addresses in the wild. We look for other vul-
nerable domains whose servers mapped to the same IP addresses of
the already-found-to-be-vulnerable TLS servers, which results in
additional 272,406 domains (out of the total 419,559 pairs of IP ad-
dresses and domains) that are not found from the 7Mdomain dataset.
The breakdown of the additional vulnerable domains are shown
in Table 3. Interestingly, 114,003 domains (41.8% out of 272,406)
correspond to more than one IP addresses, which indicates that
these domains have multiple TLS servers with vulnerable settings.
Thus, the attackers can have a wider option of choosing vulnerable
TLS servers when redirecting clients. This may help reduce the
network latency to perform the redirection.

7M
raw

domain
list

6 vantage
points

Log TLS
Handshake
messages

Compare

29K
vulnerable

domain
list

❶
Query
DNS

A
records

❸
Detect
CDN

Domains
using
CDN

IP-API IP-AS
mapping

ping
Latency

to IP
address

❹
Detect
anycast

Anycast
IP

addresses

CAIDA’s
AS-Org

mapping

IP address
ownership

❷
Match
IP-Org

CNAME,
NS

records

Classify

6 vantage
points

6 vantage
points

Figure 4: Identification process of the web server management—To better understand the root causes of spatial differences in
TLS versions or ciphersuites, we devise a method to categorize the web hosting service providers (including CDNs) that exhibit
the spatial differences. First, we find the vulnerable domains by establishing TLS handshakes with the 7M target domains from
the six vantage points. Then, we query DNS servers for the vulnerable domains and obtain A, CNAME, and NS records. With
the three types of the DNS records, we identify the ownership of IP addresses and check whether anycasting or CDN is used.

Table 3: More vulnerable domains—We present the break-
down of vulnerable domains in the wild from the 782M do-
main dataset.

Downgradable TLS Version Weak Ciphersuite

TLS 1.0 TLS 1.1 TLS 1.2 TLS-RSA SHA1 AES-128 Total

2,948 7 340,620 549 837 74,598 419,559

4.3 Cases of Spatial Differences
To understand why such a spatial disparity exists, we further inves-
tigate the vulnerable domains. There are cases where the different
TLS versions or ciphersuites for the same domain are found from
different vantage points. Specifically, the different IP addresses of
the weak TLS servers are found across the vantage points and
also across different CDN networks. For example, the IP addresses
of www.aliceblue ∗ ∗ ∗ ∗ ∗ .com are 104.18.15.** from Paris, France
and 148.72.249.** from the rest.1 Note that the former is served by
Cloudflare using TLS 1.3, but the latter is served with TLS 1.2
from GoDaddy. That is, only the clients located around Paris can
securely communicate with the server (if there is no redirections),
while others may be vulnerable to other TLS attacks.

As another example, sl ∗ ∗ ∗ .com is the only domain listed in
Alexa top 100 sites, which can be downgraded from TLS 1.3 to
1.2 and from AES256 to AES128. The domain is using Amazon Web
Service (AWS) EC2 and is mapped to different IP addresses each
time by Amazon name servers. Some of them supports TLS 1.3, while
the others did not.

In some of the Alexa top 100K domains, TLS 1.3 can be down-
graded to TLS 1.0. The toc ∗ ∗ ∗ .net domain is mapped to several
anycast IP addresses owned by Cloudflare; however sessions in

1The domain and its IP addresses are masked for privacy.

some areas are established with TLS 1.0. The tuy ∗ ∗ ∗ .com domain,
hosted by a non-anycast single IP address in all regions, exhibits
different TLS versions; we can infer that differently configured
multiple servers are using a single public IP address.

From our observations, we can conclude that the spatial differ-
ence is mainly due to the different TLS security settings across
the multiple servers located around the world that are primarily
relying on multiple CDNs [35], or web hosting service providers,
or multiple servers in the cloud services. Therefore, we need to
identify how the web server of each domain is managed, which
helps better understand the root causes of the spatial differences
and ultimately present mitigations against the attack.

4.4 HowWeb Servers are Managed
We first need to know how web servers are managed and operated
(or which content delivery platform is used) for each vulnerable
domain to better understand why the TLS versions and ciphersuites
are differently configured depending on the clients’ locations. A
simple approach of web server provisioning is that the domain
owner operates and manages her/his web servers directly. In this
case, keeping the web servers secure and up to date is the responsi-
bility of the domain owner. Another option is to delegate content
delivery to a third-party like CDNs or web hosting service providers.
In this case, the administration of web servers such as configuring
TLS parameters or updating TLS versions is performed by the third
party. Meanwhile the domain owner only needs to manage web
content.

We present a method to identify how web servers are managed.
First, 1 we obtain the IP addresses of domains by querying DNS
servers from the six vantage points across the five continents; we
also collect CNAME, NS, and A records as well. A records are used
for 2 IP address owner identification and 4 anycast IP address
identification. Moreover, CNAME and NS records can be used for

US West Oceania

Domain www.hermes.com www.hermes.com

CNAME chain

A record 192.229.211.218 163.171.197.13, 163.171.208.212

CNAME

2-01-272f-0080.cdx.cedexis.net.

cs1001.wpc.phicdn.net.

CNAME

A

CNAME

2-01-272f-0080.cdx.cedexis.net.

www.hermes.com.wtxcdn.com.

CNAME

A

Figure 5: Examples of multi-CDN detection—There are two
or more different CDN service providers for a CNAME chain
of the domain www.hermes.com. Specifically, this domain is
served from two CDNs: Verizon CDN from the US west and
Alibaba Cloud Computing CDN from Oceania.

3 CDN identification. Figure 4 illustrates our entire process to
identify how the web servers are managed.
1 DNS query by region.When a domain name is given, the basic
approach to obtain its associated IP addresses is to use DNS servers.
The DNS servers returnCNAME,NS, and A records as a response to
the query. A CNAME (Canonical Name or Alias) record is an alias
of another canonical domain name, which helps redirect to another
domain. An NS record specifies an authoritative name server for
a domain. Typically, CDN service providers use the two types of
records (CNAME and NS) to redirect clients’ requests to their edge
servers located nearby the clients. With an A record, we can infer
who owns and manages a particular IP address. Moreover, we can
also identify the anycast CDN services such as CloudFlare2.

We query DNS servers for the 29K vulnerable domains from the
six vantage points, and obtain CNAME, NS, and A records of the
domains. The collected DNS records are used to identify 2 the
ownership of IP address and CDN services (3 DNS-based mapping
CDN services and 4 anycast CDN services).
2 IP address owner identification. A simple approach to iden-
tify who owns and manages the IP addresses of the 29K vulnerable
domains is to use the Autonomous System (AS) information. An
AS information informs us of a collection of IP routing prefixes
under the control of a single administrative entity. Typically, all
IP addresses belonging to a single AS are managed by a single
organization; however, organizations that operate large or compli-
cated internet infrastructures may have multiple ASes in different
IP address ranges.

This information of IP address ownership can be used to infer
whether different IP addresses are under the control of the same
organization. We use the IP geolocation API service, called IP-API3
that provides not only the geolocation information, but also the AS
information. Then, we use CAIDA’s Inferred AS-to-Organization
Mapping Dataset [9] that maps between organizations and ASes; in
total, it has 95,806 ASes mapped to 78,309 organizations. With the
two datasets, we can infer the ownership of the IP addresses. For
25,777 IP addresses from the DNS A records of 28,956 vulnerable
domain names, we observe that they belong to 5,427 organizations.

2https://www.cloudflare.com/
3https://ip-api.com/

3 CDNdetection.As explained in Section 2.2, recall that websites
rely on CDNs for various reasons and two methods are mainly used
for CDNs: (i) DNS-based mapping and (ii) anycasting. In the case
of DNS-based mapping CDNs, they can be readily identified if the
vulnerable domains redirect clients’ requests to CDNs using the
CNAME or NS records from the DNS queries, which helps us check
whether CDN edge servers can be the one of the root causes of the
vulnerability. Detecting anycasting will be explained in 4 .

Typically, a website uses only a single CDN service provider.
However, a singlewebsitemay rely onmultiple CDN service providers.
Such cases are called multi-CDNs if more than one CDN service
provider are found from the chains of NS records, as illustrated in
Figure 5. Obviously, in multi-CDN cases, A records point to different
IP addresses.

We first remove the subdomains from CNAME and NS records
of the 29K vulnerable domains, and check whether they match with
the domain names of known CDN service providers. Among the
vulnerable domains, 1,731 domains rely on CDN services, and 358
(out of 1,731) domains are using multi-CDNs.

4 Anycasting detection. Another method to redirect clients to
CDN edge servers is anycasting. It is challenging to figure out
whether anycasting is used for a website when we look at only its
DNS records. A records may offer a hint; that is, a CDN employing
anycasting may be used if all the A records have the same IP address.
However, it does not guarantee that a single IP address from A
records means anycasting since it is possible that a single machine
hosts the website with its single IP address.

To check more rigorously, we devise a simple algorithm to de-
tect anycasting by observing the network latency. For example, if
the network delays from the six vantage points exhibit noticeable
variations, the IP address in the A record would be a single machine
or a cluster of machines with the same virtual IP address. This
is because the physical distances from the vantage points to the
machine or cluster will vary substantially. However, in the case
of anycasting, at any two vantage points (𝑝1, 𝑝2), the sum of two
network delays between the server machine (𝑠) and each of the van-
tage points (𝑙𝑝1→𝑠 and 𝑙𝑝2→𝑠) should be smaller than the network
delay between the two vantage points (𝑙𝑝1→𝑝2), whose expression
is given as follows.

𝑙𝑝1→𝑠 + 𝑙𝑝2→𝑠 < 𝑙𝑝1→𝑝2

We randomly choose any two vantage points (𝑝1, 𝑝2) physically
far from each other. We measure the network delays between the
two vantage points (𝑙𝑝1→𝑝2) by sending an ICMP [29] Echomessage.
Then, we also measure the network delays between each vantage
point and the server machine (𝑠) of the vulnerable domain (𝑙𝑝1→𝑠

and 𝑙𝑝2→𝑠). If the sum of the network delays from the two vantage
points to the web server’s IP address (𝑙𝑝1→𝑠 + 𝑙𝑝2→𝑠) is smaller than
the latency between the two vantage points (𝑙𝑝1→𝑝2), this IP address
is deemed an anycasting IP address. To detect anycasting rigorously,
we check the above delay comparison for every pair among the
six vantage points. For each comparison, we average the three
measurements. We understand that this method might have some
false positives or false negatives due to the routing instability and
queuing variations. However, we believe that it would be sufficient
for our purpose of detecting anycasting IP addresses.

Table 4: Classification of vulnerable domains—This table summarizes the classification results for Rapid7 7M and Alexa 1M
datasets, respectively. Based on this table, we analyze the root causes of the vulnerability and find that a considerable number
of vulnerable domains (25.69% in Alexa 1M dataset) employ CDNs.

Web Hosting Provider Type Subtype # of Domains
Rapid7 7M Alexa 1M

CDN DNS-based 220 (0.76%) 56 (5.18%)

Anycast Single IP address 416 (1.44%) 40 (3.70%)

Multiple IP addresses 655 (2.26%) 66 (6.10%)

Multi-CDN 315 (1.09%) 116 (10.72%)

Subtotal 1,606 (5.55%) 278 (25.69%)

Non-CDN Single IP address Non-anycast 17,926 (61.91%) 409 (37.80%)

Anycast 4,410 (15.23%) 37 (3.42%)

Multiple IP addresses owned by
the same organization

Same IP address by region 2,218 (7.66%) 157 (14.51%)

Different IP addresses by region 991 (3.42%) 70 (6.47%)

Multiple IP addresses owned by
different organizations

Same IP address by region 752 (2.60%) 28 (2.59%)

Different IP addresses by region 942 (3.25%) 102 (9.43%)

Subtotal 27,239 (94.07%) 803 (74.21%)

Unidentifiable 111 (0.38%) 1 (0.09%)

Total 28,956 (100.00%) 1,082 (100.00%)

4.5 Classification Results
The results of classifying 28,956 vulnerable domains are shown
in Table 4. First of all, more than 94% of vulnerable domains are
hosted by non-CDN operators, among which more than half are
mapped to non-anycasting single IP addresses. That is, in the case of
a non-anycasting single IP address, there could be multiple physical
machines behind a NAT or a cluster of machines with the same
virtual address. And we find that many of the first dataset of 7M
domains are uncommon domains possibly created for temporary or
special purposes (e.g., fcc27000000c14f100cf******.kee****.io4) rather
than general web services, and the biases in the classification results
may result from such cases. Each of those domains is hosted on a
single IP address since they are not web services for many clients.
Since the attack of our interest assumes distributed servers across
various regions, we now focus on popular domains in this section.

We further narrow down the target dataset to the Alexa top 1M
domains5, which gives us 1,082 vulnerable domains. 25.69% of the
vulnerable domains are using CDNs, and particularly 10.72% are
using multi-CDNs, indicating that using CDNs is one of the root
causes of inconsistency across server-side TLS settings. For CDNs,
there are numerous edge servers around the world, and it would
be challenging for CDN service providers to maintain consistent
security settings for all of their machines. Especially when using
multi-CDN, the spatial differences are likely to arise since edge
servers are under the control of different CDN companies. Con-
sidering all the cases including non-CDNs, 22% of the vulnerable

4Its domain name is masked for privacy.
5https://www.alexa.com/topsites

domains hosted on IP addresses owned by different entities. There-
fore, it reveals that delegating end-to-end security to multiple CDN
providers or web hosting providers is risky for website owners.

Also, there are cases where security needs to be strengthened
with the help of a third party. Among 4,195 vulnerable domains that
could be downgraded to TLS 1.1 or lower, only 0.6% (26 domains)
of those domains are using CDN services. That means third party
platforms such as CDNs mostly support at least TLS 1.2, while it is
difficult for small websites running their own servers to upgrade
vulnerable TLS versions or algorithms in a timely manner. There-
fore, it can be recommended for small web service operators to
delegate server management to third parties.

5 OVERHEAD MEASUREMENT
To show the feasibility of ourmethod, we build the adversarial proxy
network across five regions and measure the delay latency due to
the redirection. Specifically, we measure the session setup time to
establish the TLS session between a client and a vulnerable server
(i.e., with redirection), which is compared with the one between a
client and an original secure server (i.e., without redirection).
Motivation. The adversary redirects the client (i.e., victim) to
one of weak TLS servers, which might result in longer network
latency. If the network delay becomes significantly higher and the
victim experiences the unusual delay, the victim might notice that
an attack is being under way. Therefore, we need to measure how
much delay incurs when the TLS handshake is redirected.
The adversarial infrastructure. We build an adversarial infras-
tructure on the AWS service by running instances on five different
regions: North America, South America, East Asia, South Asia,
and Europe. For each instance, we execute ProxyChains to run

Table 5: Measurements of the latency incurred by the redirection—Experiments with at least 5K domains in each region show
that the delay caused by the redirection has an expansion ratio of up to 1.86. Even in the worst case, only less than a second
is additionally required to establish a session. Interestingly, we find that there are some cases where a session is established
faster.

Redirected Location

Origin North America South America Europe South Asia East Asia

North America
(7,614 cases)

RTT (ms) - 176.13 142.84 227.42 135.40
𝑡𝑐→𝑜 (ms) - 468.75 526.46 463.86 526.83
𝑡𝑐→𝑣 (ms) - 1259.35 751.99 1324.74 736.99

re - 1.69 0.43 1.86 0.40

South America
(6,311 cases)

RTT (ms) 176.17 - 197.64 302.80 293.96
𝑡𝑐→𝑜 (ms) 857.54 - 825.41 876.81 831.33
𝑡𝑐→𝑣 (ms) 999.69 - 978.83 1633.27 1135.54

re 0.17 - 0.19 0.86 0.37

Europe
(5,667 cases)

RTT (ms) 142.77 197.36 - 106.84 252.11
𝑡𝑐→𝑜 (ms) 475.43 554.67 - 434.66 557.55
𝑡𝑐→𝑣 (ms) 906.10 1348.73 - 916.64 1113.48

re 0.91 1.43 - 1.11 1.00

South Asia
(5,872 cases)

RTT (ms) 227.28 303.42 106.81 - 141.61
𝑡𝑐→𝑜 (ms) 703.92 694.63 673.20 - 644.43
𝑡𝑐→𝑣 (ms) 1226.90 1694.12 659.85 - 822.86

re 0.74 1.44 -0.02 - 0.28

East Asia
(7,153 cases)

RTT (ms) 135.57 292.21 250.59 140.63 -
𝑡𝑐→𝑜 (ms) 782.49 702.17 835.62 725.25 -
𝑡𝑐→𝑣 (ms) 863.98 1671.61 1172.52 1108.15 -

re 0.10 1.38 0.40 0.53 -

an HTTP proxy, which forwards TLS messages to its nearest web
server.

Experiments. The experiments are performed on a regional basis
by establishing TLS sessions with and without the redirection. We
use OpenSSL s_time as a client that supports TLS 1.3. For each
domain, we populate a three-tuple entry: (a domain name, the
region where the client is located, the list of regions with lower
TLS versions compared to the TLS version of the server in the same
region as the client), based on our observations in Section 4. That
is, we already know which regions have web servers with lower
TLS versions for individual domains. For example, if example.com
supports TLS 1.3 in regions A and C, but supports TLS 1.2 in region
B and TLS 1.1 in regions D and E. If the client is in region A, we
make an entry: (example.com, A, (B, D, E)). For the client in region
B, there is an entry: ((example.com, B, (D, E)). Note that there is no
entry for client in region D since there are no TLS servers with
lower versions. Then, we conduct experiments at a client in each
region. For instance, a client located in region A sends ClientHello
directly to the web server of example.com in region A, while it also
sends ClientHello redirected to the web servers in regions B, D
and E.

Metric. To quantify the effect of the attack from a user’s perspec-
tive, we introduce a ratio metric re to indicate how much delay
incurs due to the redirection, defined as follows:

𝑟𝑒 =
𝑡𝑐→𝑣 − 𝑡𝑐→𝑜

𝑡𝑐→𝑜

where 𝑟𝑒 is an expansion ratio indicating howmuch additional delay
incurs due to the attack, 𝑡𝑐→𝑣 is a TLS handshake time between
a client and a vulnerable server (with redirection), and 𝑡𝑐→𝑜 is a
TLS handshake time between a client and its original server, which
would be an edge server close to the client.

Results. The experiment results are shown in Table 5 and we find
the two main observations.

First, the expansion ratio (𝑟𝑒) varies across the regions up to 1.86.
The time required to establish a session with an original server
(𝑡𝑐→𝑜) is relatively low in North America and Europe, due to the
fact that many of the web servers are located in those regions. On
the other hand, the average of elapsed times to establish a session
with a vulnerable server is similar regardless of where the client
is. As a result, the expansion ratio in North America and Europe is
relatively high, which means that users in those regions might be
able to recognize that they are being redirected/attacked.

Second, we find that there are some cases that exhibit similar
session setup delays to establish a TLS session with and without
the redirection. This is due to the lack of an edge server in a nearby
location; thus, even without a redirection, the client is connected
to a server located in a different continent. In such cases, there is
little difference in network latency.

Based on the above two observations, we believe that it is difficult
for users to recognize the redirection. Since less than one second
additionally incurs by the attack, and sometimes redirected sessions
are established faster, it may be difficult for clients to figure out

that the browser is redirected to a server located in a different
continent [27].

6 DISCUSSIONS
6.1 Mitigation

Distributedmonitoring system. Our analysis demonstrates that
a TLS handshake message could be successfully redirected to in-
securely configured servers without anyone (web server opera-
tors6 and clients) noticing. Web server operators are burdened with
keeping the security level of numerous servers. To mitigate this, a
continuous monitoring system can be established. Rather than iso-
lated monitoring, continuously checking the security status of edge
servers at various points across the world, similar to the first step of
our methodology, is necessary to cover the cases like multi-CDNs.

Moreover, the monitoring system should periodically update,
aggregate, and disseminate the mapping dataset. If the size of the
dataset is too large to handle, we may devise a space-efficient data
structure similar to CRLite [22]. Also, browser vendors can add this
functionality to their web browsers for clients. This functionality
is to periodically download and use this dataset to check if users
access domains that have multiple IP addresses. The web browser
keeps track of the network latency of the domains and calculates
the average of the network delays. If the network delays are notably
longer than the average, the web browser may show a warning
message to users or report anonymized packet logs to its security
center for post-mortem analysis.
Automated management. It is also necessary to establish a sys-
tem to keep the TLS configurations of multiple servers up to date.
Of course, many companies already have similar systems, but small
businesses will find it difficult to deploy such systems. Just as Let’s
Encrypt [2] has contributed to increasing the proliferation of TLS
by automating the issuance and management of TLS certificates,
it will help to maintain robust security of web servers including
small websites if there is a configuration management system that
automatically manages security settings for web servers in real
time.

6.2 Limitations

Variability of targets. Our attack model is based on spatial differ-
ences in server-side configurations. Note that such kind of vulnera-
bility cannot be fixed since the protocols, software programs, and
their settings are continuously upgraded and changed. Hence the
machines that correspond to a particular website all over the world
cannot be synchronized in terms of security aspects. Also, a CDN
service provider’s mapping clients to servers may be dynamically
determined. That is, the same user can be redirected to different
servers at different times. Thus, the attack may not be successful if
the gap between the time of collecting the vulnerability data and
the time of launching redirection attacks is long. In fact, there have
been cases where the list of vulnerable domains we have collected
is not valid after a few weeks; the vulnerable servers are upgraded
in the meantime.

6If they analyze the IP addresses of the incoming clients, it might be possible to detect
anomaly. However, we believe it is not easily configurable.

Browser warnings. Vulnerabilities in TLS 1.1 and 1.0 have long
been known, and the recent decision by major browsers to no
longer support those versions has laid the foundation for improved
overall web security levels. Therefore, attempts to downgrade below
TLS 1.1 using our attacks may be thwarted by browser warnings.
However, our focus is not just attacking on specific TLS versions,
but attacks on the inconsistency of supported versions and settings
of distributed servers, often under the control of different entities.

7 RELATEDWORK
We classify the related work into three areas: downgraded by ma-
nipulating protocol messages, by browsers, or by middleboxes.

Downgraded by manipulating protocol messages. In the Fac-
toring RSA Export Keys (FREAK) [7] attack, MitM attackers ma-
nipulate the ClientHello message to make a server and a client
handshake using a weak export-grade RSA algorithm that is not
requested by the client. If a session is encrypted by an export-grade
RSA algorithm with weak level encryption, the attacker can re-
cover the RSA decryption key, and then decrypt all the messages
following. The Logjam [3] attack is similar but takes advantage
of the protocol defects of TLS 1.2 or earlier, forcing the server to
select the export-grade Diffie-Hellman Ephemeral (DHE) key ex-
change algorithm. Both FREAK and Logjam attacks are a kind of
TLS downgrade attacks that exploit 1990’s export-grade algorithms.

The Decrypting RSA with Obsolete and Weakened eNcryption
(DROWN) [6] attack also exploits a vulnerability that shares a pub-
lic key credential with a server that supports SSLv2, which can be
mitigated only if SSLv2 is disabled on the server side. In the Security
Losses fromObsolete and Truncated Transcript Hashes (SLOTH) [8]
attack, an adversary downgrades a TLS session by forcibly adding
vulnerable algorithms (RSA and MD5) to the SignatureAndHash-
Algorithm field of the ServerKeyExchangemessage in TLS 1.2. Then,
the client uses a hash algorithm which is not selected by the server,
which enables attacks based on hash collisions.

Downgraded by browsers. The Padding Oracle On Downgraded
Legacy Encryption (POODLE) [26] attack leverages a block padding
vulnerability, taking advantage of the fact that some servers or
clients still support SSL 3.0 for the compatibility with legacy sys-
tems. An MitM attacker deliberately drops a client’s handshake
messages and forces the client to have a session downgraded to SSL
3.0. In a downgraded session, the attacker can exploit CBC padding
vulnerabilities to decrypt sensitive data such as passwords among
encrypted messages.

Downgraded by middleboxes. Several studies [11, 14, 23, 37]
have reported that middleboxes can downgrade the TLS version
due to incorrect implementations in the middlebox software. For
example, a middlebox splits the TLS session between a client and a
server, and establishes an old version TLS session with the server,
while having an up-to-date TLS session with the client. Thus, the
client cannot be aware that the TLS version is downgraded between
the middlebox and the server.

There have been many attempts to perform new attacks against
TLS. However, these studies typically focus on leveraging a hash
collision or a fallbackmechanism of browsers. Note that our method
relies on the spatial differences of TLS versions and security settings

of web servers across the globe, in contrast with the aforementioned
TLS attacks.

8 CONCLUSION
TLS is the de facto standard for secure communications on the
Internet and has addressed its vulnerabilities by upgrading its ver-
sions. Web server operators may have tried to keep their software
and security configurations up-to-date and secure. However, for
world-wide popular web services, it is difficult to consistently man-
age globally distributed servers, resulting in spatial differences in
terms of the TLS security level. We have presented a new method
exploiting this server-side disparity and found 29K domains exhibit
such spatial differences in their TLS configurations. In addition, we
devised a new algorithm to identify how web servers are managed
and to analyze why spatial differences exist in the vulnerable do-
mains. Finally, we measured the overhead of the redirection and
demonstrated its feasibility.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their in-
sightful feedback and suggestions. This work was supported by
the National Research Foundation of Korea (NRF) grant (No. NRF-
2016M3C4A7952587) funded by the Ministry of Science and ICT
(MSIT) of Korea.

REFERENCES
[1] Donald E. Eastlake 3rd. 2011. Transport Layer Security (TLS) Extensions: Exten-

sion Definitions. RFC 6066. https://doi.org/10.17487/RFC6066
[2] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley,

Alan Flores-López, J. Alex Halderman, Jacob Hoffman-Andrews, James Kas-
ten, Eric Rescorla, Seth Schoen, and Brad Warren. 2019. Let’s Encrypt: An
Automated Certificate Authority to Encrypt the Entire Web (CCS ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 2473–2487. https:
//doi.org/10.1145/3319535.3363192

[3] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-
Béguelin, and Paul Zimmermann. 2015. Imperfect Forward Secrecy: How
Diffie-Hellman Fails in Practice. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security (Denver, Colorado, USA)
(CCS ’15). Association for Computing Machinery, New York, NY, USA, 5–17.
https://doi.org/10.1145/2810103.2813707

[4] Nadhem J. Al Fardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy (SP ’13). IEEE Computer Society, USA, 526–540. https:
//doi.org/10.1109/SP.2013.42

[5] Nadhem J. AlFardan, Daniel J. Bernstein, KennethG. Paterson, BertramPoettering,
and Jacob C. N. Schuldt. 2013. On the Security of RC4 in TLS. In Proceedings of
the 22nd USENIX Conference on Security (Washington, D.C.) (SEC ’13). USENIX
Association, USA, 305–320.

[6] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and
Yuval Shavitt. 2016. DROWN: Breaking TLS Using SSLv2. In Proceedings of the
25th USENIX Conference on Security Symposium (Austin, TX, USA) (SEC ’16).
USENIX Association, USA, 689–706.

[7] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. 2017. A Messy State of the Union: Taming the Composite State
Machines of TLS. Commun. ACM 60, 2 (Jan. 2017), 99–107. https://doi.org/10.
1145/3023357

[8] Karthikeyan Bhargavan and Gaëtan Leurent. 2016. Transcript Collision Attacks:
Breaking Authentication in TLS, IKE, and SSH. In 23rd Annual Network and
Distributed System Security Symposium (San Diego, CA, USA) (NDSS ’16). Internet
Society, Reston, VA, USA. https://doi.org/10.14722/ndss.2016.23418

[9] CAIDA. 2020. The CAIDA UCSD AS to Organization Mapping Dataset. Retrieved
April 10, 2020 from https://www.caida.org/data/as-organizations/

[10] Carlo Contavalli, Wilmer van der Gaast, David C Lawrence, and Warren "Ace"
Kumari. 2016. Client Subnet in DNS Queries. RFC 7871. https://doi.org/10.17487/
RFC7871

[11] Xavier de Carné de Carnavalet and Mohammad Mannan. 2016. Killed by Proxy:
Analyzing Client-end TLS Interception Software. In 23rd Annual Network and
Distributed System Security Symposium (San Diego, CA, USA) (NDSS ’16). Internet
Society, Reston, VA, USA. http://dx.doi.org/10.14722/ndss.2016.23374

[12] Thai Duong and Juliano Rizzo. 2011. Here Come the
⊕

Ninjas.
[13] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,

Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey,
and J. Alex Halderman. 2014. The Matter of Heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Conference (Vancouver, BC, Canada)
(IMC ’14). Association for Computing Machinery, New York, NY, USA, 475–488.
https://doi.org/10.1145/2663716.2663755

[14] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael Bailey, J. Alex Halderman, and Vern Paxson. 2017. The Security
Impact of HTTPS Interception. In Proceedings of the 24th Annual Network and
Distributed System Security Symposium (San Diego, CA, USA). Internet Society,
Reston, VA, USA. http://dx.doi.org/10.14722/ndss.2017.23456

[15] Taher Elgamal and Kipp E.B. Hickman. 1995. The SSL Protocol. Internet-Draft draft-
hickman-netscape-ssl-00. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/html/draft-hickman-netscape-ssl-00 Work in Progress.

[16] Scott R. Fluhrer, Itsik Mantin, and Adi Shamir. 2001. Weaknesses in the Key
Scheduling Algorithm of RC4. In Revised Papers from the 8th Annual International
Workshop on Selected Areas in Cryptography (SAC ’01). Springer-Verlag, Berlin,
Heidelberg, 1–24.

[17] Yoel Gluck, Neal Harris, and Angelo Prado. 2013. BREACH: Reviving the CRIME
Attack. In Black Hat USA 2013 (Las Vegas, NV, USA). http://breachattack.com

[18] Google. 2020. Google Transparency Report: HTTPS encryption on the web. Re-
trieved July 29, 2020 from https://transparencyreport.google.com/https

[19] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas Jost,
Narseo Vallina-Rodriguez, and Oliver Hohlfeld. 2020. Tracking the Deployment
of TLS 1.3 on theWeb: A Story of Experimentation and Centralization. SIGCOMM
Comput. Commun. Rev. 50, 3 (July 2020), 3–15. https://doi.org/10.1145/3411740.
3411742

[20] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson,
Narseo Vallina-Rodriguez, and Juan Caballero. 2018. Coming of Age: A Longi-
tudinal Study of TLS Deployment. In Proceedings of the Internet Measurement
Conference 2018 (Boston, MA, USA) (IMC ’18). Association for Computing Ma-
chinery, New York, NY, USA, 415–428. https://doi.org/10.1145/3278532.3278568

[21] Athanasios Kountouras, Panagiotis Kintis, Chaz Lever, Yizheng Chen, Yacin Nadji,
David Dagon, Manos Antonakakis, and Rodney Joffe. 2016. Enabling Network
Security Through Active DNS Datasets. In Proceedings of the 19th International
Symposium on Research in Attacks, Intrusions and Defenses (Paris, France) (RAID
’16). Springer, 188–208. https://doi.org/10.1007/978-3-319-45719-2_9

[22] James Larisch, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove, and
Christo Wilson. 2017. CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 539–
556.

[23] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi, Selin Chun, Taejoong
Chung, and Ted "Taekyoung" Kwon. 2019. maTLS: How to Make TLS middlebox-
aware?. In 26th Annual Network and Distributed System Security Symposium
(San Diego, CA, USA) (NDSS ’19). Internet Society, Reston, VA, USA. https:
//dx.doi.org/10.14722/ndss.2019.23547

[24] Itsik Mantin and Adi Shamir. 2001. A Practical Attack on Broadcast RC4. In
Revised Papers from the 8th International Workshop on Fast Software Encryption
(FSE ’01). Springer-Verlag, Berlin, Heidelberg, 152–164.

[25] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, Johannes
Mittmann, and Jörg Schwenk. 2021. Raccoon Attack: Finding and Exploiting
Most-Significant-Bit-Oracles in TLS-DH(E). https://raccoon-attack.com

[26] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE Bites:
Exploiting The SSL 3.0 Fallback. Security Advisory 21 (2014), 34–58.

[27] Fiona Fui-Hoon Nah. 2004. A Study on Tolerable Waiting Time: How Long are
Web Users Willing to Wait? Behaviour & Information Technology 23, 3 (2004),
153–163. https://doi.org/10.1080/01449290410001669914

[28] Goutam Paul and Subhamoy Maitra. 2007. Permutation after RC4 Key Scheduling
Reveals the Secret Key. In Proceedings of the 14th International Conference on
Selected Areas in Cryptography (Ottawa, Canada) (SAC ’07). Springer-Verlag,
Berlin, Heidelberg, 360–377.

[29] John Postel. 1981. Internet Control Message Protocol. RFC 792. https://doi.org/
10.17487/RFC0792

[30] Rapid7. 2020. Rapid7 Open Data: SSL Certificates. Retrieved July 29, 2020 from
https://opendata.rapid7.com/sonar.ssl/

[31] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. https://doi.org/10.17487/RFC8446

[32] Eric Rescorla and Tim Dierks. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. https://doi.org/10.17487/RFC5246

https://doi.org/10.17487/RFC6066
https://doi.org/10.1145/3319535.3363192
https://doi.org/10.1145/3319535.3363192
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1109/SP.2013.42
https://doi.org/10.1145/3023357
https://doi.org/10.1145/3023357
https://doi.org/10.14722/ndss.2016.23418
https://www.caida.org/data/as-organizations/
https://doi.org/10.17487/RFC7871
https://doi.org/10.17487/RFC7871
http://dx.doi.org/10.14722/ndss.2016.23374
https://doi.org/10.1145/2663716.2663755
http://dx.doi.org/10.14722/ndss.2017.23456
https://datatracker.ietf.org/doc/html/draft-hickman-netscape-ssl-00
https://datatracker.ietf.org/doc/html/draft-hickman-netscape-ssl-00
http://breachattack.com
https://transparencyreport.google.com/https
https://doi.org/10.1145/3411740.3411742
https://doi.org/10.1145/3411740.3411742
https://doi.org/10.1145/3278532.3278568
https://doi.org/10.1007/978-3-319-45719-2_9
https://dx.doi.org/10.14722/ndss.2019.23547
https://dx.doi.org/10.14722/ndss.2019.23547
https://raccoon-attack.com
https://doi.org/10.1080/01449290410001669914
https://doi.org/10.17487/RFC0792
https://doi.org/10.17487/RFC0792
https://opendata.rapid7.com/sonar.ssl/
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC5246

[33] Ronald L. Rivest. 1992. The MD5 Message-Digest Algorithm. RFC 1321. https:
//doi.org/10.17487/RFC1321

[34] Juliano Rizzo and Thai Duong. 2012. The CRIME Attack. In Ekoparty Security
Conference 2012.

[35] Rachee Singh, Arun Dunna, and Phillipa Gill. 2018. Characterizing the Deploy-
ment and Performance of Multi-CDNs. In Proceedings of the Internet Measurement
Conference 2018 (Boston, MA, USA) (IMC ’18). Association for Computing Ma-
chinery, New York, NY, USA, 168–174. https://doi.org/10.1145/3278532.3278548

[36] Sooel Son and Vitaly Shmatikov. 2010. The Hitchhiker’s Guide to DNS Cache
Poisoning. In Security and Privacy in Communication Networks (SecureComm
’10), Sushil Jajodia and Jianying Zhou (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 466–483.

[37] Louis Waked, MohammadMannan, and Amr Youssef. 2018. To Intercept or Not to
Intercept: Analyzing TLS Interception in Network Appliances. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security (Incheon,
Republic of Korea) (ASIACCS ’18). Association for Computing Machinery, New
York, NY, USA, 399–412. https://doi.org/10.1145/3196494.3196528

[38] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. 2005. Finding Collisions in the
Full SHA-1. In Proceedings of the 25th Annual International Conference on Advances
in Cryptology (Santa Barbara, California) (CRYPTO ’05). Springer-Verlag, Berlin,
Heidelberg, 17–36. https://doi.org/10.1007/11535218_2

[39] Xiaoyun Wang and Hongbo Yu. 2005. How to Break MD5 and Other Hash Func-
tions. In Proceedings of the 24th Annual International Conference on Theory and
Applications of Cryptographic Techniques (Aarhus, Denmark) (EUROCRYPT ’05).
Springer-Verlag, Berlin, Heidelberg, 19–35. https://doi.org/10.1007/11426639_2

https://doi.org/10.17487/RFC1321
https://doi.org/10.17487/RFC1321
https://doi.org/10.1145/3278532.3278548
https://doi.org/10.1145/3196494.3196528
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2

	Abstract
	1 Introduction
	2 Background
	2.1 TLS Handshakes and Downgrade Attacks
	2.2 CDN Redirection

	3 New Attack Model
	3.1 Overview
	3.2 Populating Target Database
	3.3 TLS Handshake Redirection
	3.4 Downgraded Session Exploitation
	3.5 Summary

	4 Real-World Experiments
	4.1 Data Collection
	4.2 Vulnerable Domains
	4.3 Cases of Spatial Differences
	4.4 How Web Servers are Managed
	4.5 Classification Results

	5 Overhead Measurement
	6 Discussions
	6.1 Mitigation
	6.2 Limitations

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

