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Abstract—Due to the difficulty of getting the high-quality
labels required for supervised learning, unsupervised learning
has received considerable attention in diverse domains. One
of the recent and widely used unsupervised algorithms is the
autoencoder, but designing an optimal autoencoder for a specific
dataset is challenging. In detail, an autoencoder uses dimension-
ality reduction to learn data distribution with the bottleneck,
and it is challenging to find the optimal number of nodes in the
bottleneck, which is closely related to the intrinsic dimension.

We propose CUBEDIMAE, a framework that estimates the
intrinsic dimension and designs an optimal autoencoder. It
approximates data in an ingenious way to emulate continuity
to build on the idea of the degree of freedom to estimate
the dimension. To show its feasibility, we implement a proof-
of-concept of our method and release the source code. Our
numerical result shows that it works correctly on 5 sets of data
and efficiently generates optimal autoencoders, saving 41.2% in
time compared with the baseline approach.

I. INTRODUCTION

There has been a considerable advance in artificial intelli-
gence (AI) technology, which contributes to making systems
automated and efficient in many domains. However, unsuper-
vised learning has been paid much attention because getting
high-quality labels for supervised learning is difficult.

An autoencoder is one of the widely used unsupervised
learning algorithms, which learns data distribution by com-
pressing the data (encoder) and then decompressing it (de-
coder). Due to its simplicity, there have been a lot of appli-
cations in diverse domains, including security [1], [2], market
prediction [3], fault diagnosis [4], and image compression [5].

However, finding an optimal autoencoder for a specific
dataset is challenging. An autoencoder, which learns the
distribution through dimensionality reduction, fails to recon-
struct the input if the latent dimension is less than a certain
threshold, which puts an upper bound on the compression
ratio. Identifying such a threshold is helpful, as we can make
a lightweight autoencoder with minimal latent dimension. It
has been observed that the threshold matches the intrinsic
dimension of input data [6].

There have been many attempts [6]–[8] to identify the intrin-
sic dimension by training an autoencoder multiple times, ad-
justing the latent dimension, and observing the reconstruction
performance. However, current gradient descent algorithms
depend on stochastic processes, producing different results on
every trial even if the optimal value of the latent dimension
has been found by observing the reconstruction losses.

To address such a challenge, in this paper, we propose
CUBEDIMAE, a framework to identify the intrinsic dimen-
sion in an efficient and deterministic way and generate an
autoencoder automatically. As datasets are discontinuous and
dimension concepts assume continuity, we suggest tessellation
to emulate continuity. Then, our framework finds the dataset’s
intrinsic dimension. Finally, a simple autoencoder is generated,
whose latent dimension is identified as the intrinsic dimension.

To show its feasibility, we implement CUBEDIMAE and
evaluate it by identifying the intrinsic dimensions of 5 datasets,
including the s-curve, the Swiss roll, and spheres. The ex-
periments show that CUBEDIMAE estimates the dimensions
efficiently, showing 41.2% reduction in time, compared with
the baseline approach [6] that relies only on repeated training
to find the optimal configuration.

In summary, we make the following contributions:
• We design CUBEDIMAE, a framework that identifies the

intrinsic dimension by tessellation and automatically gen-
erates an autoencoder based on the intrinsic dimension.

• We implement CUBEDIMAE and release our source
code on the public repository at https://github.com/
sandwich-coder/CubeDimAE.

• We demonstrate the feasibility of CUBEDIMAE on 5
datasets and show its efficiency compared with the base-
line approach.

II. BACKGROUND

This section provides background knowledge of the intrinsic
dimension, autoencoder, and tessellation because we are going
to find the intrinsic dimension by tessellation and use it as the
latent dimension of an autoencoder.

https://github.com/sandwich-coder/CubeDimAE
https://github.com/sandwich-coder/CubeDimAE


A. Intrinsic Dimension

The intrinsic dimension refers to the minimum number
of parameters needed to provide a good approximation of a
dataset [9]–[13]. However, there is no rigorous mathematical
definition of the quantity. Instead, there is a concept called
inductive dimension, where the dimension of an object is
determined by that of its boundary. According to the inductive
dimension, the dimensions of a curve and a surface in a
Euclidean space are one and two, respectively. The inductive
dimension of a point is 0 and its boundary, which is an empty
set, has the dimension of -1. [14] The research community
has focused on finding the intrinsic dimension to identify the
lower bound for the dimensionality reduction or to measure
the complexity [15].

B. Autoencoder

An autoencoder is a neural network that compresses and
then reconstructs the input. Its predecessor, principal com-
ponent analysis (PCA), has proved highly effective in linear
dimensionality reduction through linear coordinate transfor-
mation but performs poorly on nonlinear distributions. As an
alternative, autoencoders were proposed for learning nonlinear
coordinate transformations to compress nonlinear datasets
adequately [15].

An autoencoder consists of an encoder and a decoder. It
has a layer called bottleneck and the number of nodes in the
bottleneck is called latent dimension. The bottleneck is a layer
with the smallest number of nodes and is the output of the
encoder. The encoder compresses the dataset and the decoder
reconstructs it. Then, the model is trained to reconstruct the in-
put with as small a loss as possible. The compression restricts
the reconstruction to be effective only on the trained dataset,
resulting in large discrepancies on data whose distribution
differs from the trained. Such capability of “learning” data
distribution resulted in wide adoption in various areas, ranging
from noise reduction to data compression [16]–[19].

C. Tessellation

Figure 1: 2-dimensional tessellations

A tessellation, or tiling, is the covering of a space with
geometric shapes with no gap nor overlap [20]. The shapes that
cover a space are called ‘tiles.’ It is equivalent to partitioning a

space in that the separated regions can be considered individual
tiles (see Figure 1).

Instead of using any shapes, tiling with identical regular
shapes is called a regular tessellation. Regular tessellations are
used where each tile should cover the same amount of area in a
structured manner, such as the sensors in a camera that receive
light or tiles that constitute a typical floor. It has been proved
that hypercube is the only type of regular polytope that can
cover an entire Euclidean space of arbitrary dimension. [20]

III. CUBEDIMAE

This section presents a framework, called CUBEDIMAE
(Figure 2), that aims to design an optimal autoencoder.

Approach. CUBEDIMAE takes a dataset and automatically
outputs an autoencoder. Our approach is to set the latent
dimension as the intrinsic dimension of the input.

Challenge. The most challenging is identifying the intrinsic
dimension, because the concepts of dimension we are familiar
with assume continuity. Recall that the dimension of a set of
discontinuous points is 0 according to the inductive dimension.

Solution. Instead of creating a new concept of dimension, we
express the data in a form that emulates continuity. It consists
of three steps:

• Tiling: first, we tessellate the Euclidean space with
identical tiles.

• Representation: next, we “fill” the tiles containing at
least one data instance. We call the set of the “filled” a
representation of the data.

• Estimation: finally, we compute the intrinsic dimension
based on the representation.

Problem scope. With the identified dimension, CUBEDIMAE
generates an autoencoder. All layers except the bottleneck are
fixed and the algorithm finds the adequate latent dimension,
putting the problem of automatic design of the rest as future
work.

IV. DETAIL OF CUBEDIMAE

This section details the research challenges and our ap-
proach in each step of CUBEDIMAE.

A. Tiling

We partition the entire space, Rn, with an n-dimensional
square grid. Then, the separated regions are tiles that cover
the space. Here, the tile size affects how a dataset would
be represented (see Figure 3). It is necessary to decide the
appropriate size to get the correct intrinsic dimension, so we
parameterize the tile size:

Definition 1 (ℓ-tile). We call a tile having an edge length of
ℓ an ℓ-tile.

Instead of fixing the length, the framework finds the appro-
priate minimum and maximum for the data distribution. Once
the range is set, the estimator iterates calculations over the
range to find the intrinsic dimension.



Figure 2: Overview

Figure 3: Representations of a line with different tile sizes

To indicate a specific tile, we index it according to its
position relative to the origin. Let T be a set of tiles in an n-
dimensional space and x be an element. Then, x is expressed
as a pair of integers, a position relative to the one at the origin.

x = (x1, x2, x3, · · · , xn) (1)

In a 2-dimensional space for example, a tile whose position
is (a, b) is an ath tile along the first axis and bth along the
second axis, counting from the tile at the origin. This way of
indexing leads to

T = Zn. (2)

From this equivalence, we can define the notion of two tiles
being next to each other.

Definition 2 (adjacent). Let T be the set of n-dimensional
tiles. For two tiles x, y ∈ T , expressed as (x1, x2, · · · , xn)
and (y1, y2, · · · , yn) respectively, they are said to be adjacent
to each other if

max
n

|xn − yn| = 1. (3)

In other words, two tiles are adjacent if their Chebyshev
distance equals 1 [21]. This is a mathematical formulation of
two n-dimensional tiles sharing at least one vertex.

B. Representation

The second step is representation. Our approach is to “fill”
every tile containing at least one data instance. With this
approach, we obtain a representation covering discontinuous
points in a coarse-grained way (see Figure 4).

Definition 3 (occupied). We call a tile that contains data
‘occupied’.

Definition 4 (vicinity). For an occupied tile, its vicinity is the
number of adjacent tiles that are occupied. The vicinity of an
empty tile is undefined.

Figure 4: Representation of the Swiss roll

C. Estimation

To find the intrinsic dimension, we compute the average
vicinity of all the occupied. The amounts of data contained
are added as weights to the average to reduce the effect of
outliers. The calculation is repeated for different tile sizes,
ℓ (m ≤ ℓ ≤ M). Lastly, we find the ℓ at which the average
vicinity reaches the maximum and get the intrinsic dimension
from the representation at that length. A representation with
the maximum mean vicinity shows the distribution in the most
connected manner. The dimension is obtained by the following
theorem.

Theorem 1 (saturation vicinity). If all tiles in an n-
dimensional space are occupied, the vicinity of every tile is
3n − 1.

The above theorem concerns a hypothetical scenario in
which a dataset “saturated” the entire n-dimensional space so
that every tile contained some data. We prove the theorem and
show how the idea of saturation eventually leads to dimension
estimation.

Proof. Consider a set of tiles, T , which is Zn, and a tile x =
(x1, x2, · · · , xn) ∈ T . Let Sn be the set containing the x and
all its adjacent elements. Below we show that the size of Sn

is 3n.

|Sn| =
∣∣∣{x′ ∣∣∣max

n
|x′

n − xn| = 1
}
∪ {x}

∣∣∣ = 3n

As the distance to x from itself is 0, max
n

|xn−xn| = 0. Thus,
Sn can be re-written as:

Sn =
{
x′
∣∣∣max

n
|x′

n − xn| ≤ 1
}

.



Let β [x] as the set of 1-dimensional tiles and all its adjacent
ones.

β [x] := {x− 1, x, x+ 1} (x ∈ Z) .

Then, S1 is β[x] as follows:

S1 = {x′ |max |x′ − x| ≤ 1}
= {x′ ||x′ − x| ≤ 1}
= {x− 1, x, x+ 1}
= β [x] .

Definitely, |S1| = |{x − 1, x, x + 1}| = 3 = 31. Let k ∈ N.
Assume |Sk| = 3k. Then,

Sk+1 =

{
x′
∣∣∣∣max

k+1

∣∣x′
k+1 − xk+1

∣∣ ≤ 1

}
=

{
x′
∣∣∣∣max

(
max

k
|x′

k − xk| ,
∣∣x′

k+1 − xk+1

∣∣) ≤ 1

}
=

{
x′
∣∣∣∣max

k
|x′

k − xk| ≤ 1,
∣∣x′

k+1 − xk+1

∣∣ ≤ 1

}
=

{
x′
∣∣ (x′

1, · · · , x′
k) ∈ Sk, x

′
k+1 ∈ β [xk+1]

}
= Sk × β [xk+1] ,

which leads to |Sk+1| = |Sk × β [xk+1]| = |Sk| 3 = 3k+1.
From this mathematical induction, we get

|Sn| = 3n.

It shows that an element in Zn always has 3n − 1 adjacent
elements. Therefore, the vicinity of every tile is 3n − 1 if all
the tiles are occupied.

Now, we can do a thought experiment. Suppose all tiles
in a k-dimensional space are occupied. Then, add an axis
orthogonal to the space to extend the dimension. For the
occupied, the vicinity does not change because every such
tile still has the vicinity of 3k − 1. It is not 3k+1 − 1, because
it was contained in a k-dimensional space.

This conclusion sheds light on a key feature of dimension.
When we call a plane in a 3-dimensional space 2-dimensional,
it can be interpreted that the plane could be contained in
some 2-dimensional space. Likewise, if the representation
of a dataset in an n-dimensional space has a vicinity of
3k − 1 (k ≤ n) on average, we can interpret the set of tiles
as those that would fully occupy and could be contained in
a k-dimensional space. From this observation, we conclude a
dataset is n-dimensional if the vicinity, for the representation,
averages to v = 3n − 1. In detail, we finally get the intrinsic
dimension, dim, from v as follows:

dim = round (log3(v + 1)) ,

where round is the round-half-up function.

V. EVALUATION

This section evaluates CUBEDIMAE on two measures –
accuracy and efficiency.

Layer # of Nodes Activation
input 3

1 100 GELU
2 99 GELU
3 98 GELU
4 97 GELU
5 96 GELU

latent k GELU
6 96 GELU
7 97 GELU
8 98 GELU
9 99 GELU

10 100 GELU
output 3 sigmoid

Table I: Network configuration

Dataset Estimated (vicinity) Answer Correct?
S-curve 2 (11.133) 2 ✓
Swiss roll 2 (10.916) 2 ✓
Möbius strip 2 (10.870) 2 ✓
Hollow sphere 2 (11.943) 2 ✓
Solid sphere 3 (22.413) 3 ✓

Table II: Accuracy

A. Experiment Setting

Implementation. We implement CUBEDIMAE by Python
3.11.0 using numpy, scikit-learn, and keras.

Target dataset. For the evaluation of CUBEDIMAE, we
generate 5 artificial datasets, which are typical examples of
nonlinearity. (see Figure 5):

• S-curve & Swiss roll: datasets widely used to test
nonlinear dimensionality reduction techniques, such as
locally linear embedding (LLE) or multidimensional scal-
ing (MDS). Both the s-curve and the Swiss roll are 2-
dimensional.

• Möbius strip: a Möbius strip of radius 1 and width 0.5.
It is 2-dimensional.

• Hollow sphere: a mesh grid of uniform distributions of
80 points along the azimuth and 40 along the elevation.
It is 2-dimensional.

• Solid sphere: a uniform solid sphere of radius 1. It is
3-dimensional.

Experiments for dimension identification. We compute the
dimension at the maximum point of the average vicinity and
then round it to the nearest integer. For the sake of analysis
and visualization, the experiments consist only of datasets of
3 parameters.

Auto-generation of an autoencoder. We design an autoen-
coder based on the intrinsic dimension identified. The network
configuration is shown in Table I.

B. Accuracy

We show the accuracy of CUBEDIMAE by comparing the
outputs with the answers. The results show that CUBEDIMAE
correctly works for all the datasets (see Table II).



(a) S-curve
(2-dimensional)

(b) Swiss roll
(2-dimensional)

(c) Möbius strip
(2-dimensional)

(d) Hollow sphere
(2-dimensional)

(e) Solid sphere
(3-dimensional)

Figure 5: Datasets

To understand, we illustrate the process of CUBEDIMAE
on the s-curve as a case study (Figure 6). We define the scale
of a dataset as the maximum range of all the parameters.
The edge length, ℓ, ranges from 1% to 10% of the scale.
We calculate the average vicinities throughout the range with
1% interval. The average vicinities range from 2.13 to 11.06.
At the maximum point, we get 2 as the intrinsic dimension
referring to Theorem 1. Finally, CUBEDIMAE generates the
neural network of latent dimension 2.

To verify the accuracy of the result, we train an autoencoder
multiple times over the latent dimensions from 1 to 5 (i.e., the
k in Table I). The autoencoder with k = 1 shows a higher loss
than other cases (see Figure 6), and those with k ≥ 2 show
similar losses. This means 2 is the minimum latent dimension
that enables an autoencoder to learn the s-curve distribution
adequately.

Figure 6: S-curve case study

We illustrate the reconstructions of the s-curve with k=1
and k = 2 (see Figure 6). The 1-dimensional reconstruction,

Baseline (s) CUBEDIMAE (s)
Dataset AE1 AE2 AE3 Total Est. AE Total

S-curve 7.29 7.25 7.66 22.2 3.2 7.25 10.45
Swiss Roll 6.92 7.06 7.34 21.32 5.42 7.06 12.48
Möbius strip 6.94 7.08 7.32 21.34 3.03 7.08 10.11
Hollow sphere 7.06 7.07 7.35 21.48 5.67 7.07 12.74
Solid sphere 6.97 7.09 7.33 21.39 10.12 7.33 17.45

Table III: Efficiency

the red figure on the left, only follows the “middle line” of the
s-curve, rather than fully threading all parts of the surface. It
can be observed that the s-curve compressed to two parameters
is adequately reconstructed compared with that compressed to
only one.

C. Efficiency

We show our CUBEDIMAE efficiently designs an optimal
autoencoder for a given dataset. To this end, we consider the
baseline approach [6], for the comparison with CUBEDIMAE.
In the baseline approach an autoencoder is tested with all the
possible latent dimensions, which are less than or equal to the
dimensionality of data, and the losses are computed. In the
experiment, we use the identical network configuration and
the same hyper-parameters (e.g., the batch size or the epoch)
for both approaches. For the metric, we measure the elapsed
time to obtain an optimal autoencoder. The two approaches
consist of:

• Baseline: the time spent training all the autoencoders. An
optimal autoencoder has a latent dimension below which
the reconstruction performance drops drastically.

• CUBEDIMAE: the time spent identifying the intrinsic
dimension and training an autoencoder once.

We demonstrate the elapsed times in Table III. CUBEDI-
MAE shows a significant improvement in efficiency.

VI. RELATED WORK

Autoencoders to estimate the intrinsic dimension. Much
research has been conducted to get the intrinsic dimension
using autoencoders. Wang et al. [6] shows that there is a rela-
tionship between the intrinsic dimension of input data and the
number of nodes in the compression layer and demonstrates
its possibility on synthetic data and the MNIST dataset [22].
Bahadur et al. [7] uses autoencoders to identify the intrinsic



dimension by leveraging sparsity-inducing penalties to control
the number of non-zero nodes in the compression layer instead
of changing the network structure. Similarly, Kärkkäinen et
al. [8] use antoencoders with sparsity penalties and singular
value proxies in identifying the intrinsic dimension. Note that
the studies above focus on estimating the intrinsic dimen-
sion using autoencoders. On the contrary, our work aims to
automatically generate an optimal autoencoder for a given
dataset, assuming the number of nodes in the compression
layer is closely related to the intrinsic dimension that the
studies report.

Automatic generation of a neural network. There have
been several studies to generate neural networks automatically.
Assunçao et al. [23] use grammar-based genetic programming
by using a grammar to encode network topology and parame-
ters and making the topology and parameters evolve. The evo-
lution of the network structure finally results in a reasonable
performance. Safarik et al. [24] uses the genetic algorithm
to find appropriate hyperparameters for a neural network.
These works [25] mostly rely on evolutionary techniques.
Unlike the existing works that utilize genetic algorithms to
generate a network, we create an autoencoder with a deeper
understanding of the concept of dimension.

VII. CONCLUSION

We propose CUBEDIMAE, a framework that identifies the
intrinsic dimension of data and designs the network by itself.
We demonstrate its feasibility on 5 datasets, showing 100%
accuracy. We also report the efficiency of CUBEDIMAE com-
pared with the baseline approach, showing 41.2% reduction
in time in finding an optimal autoencoder. In future work, we
will test CUBEDIMAE on real-world data, such as MNIST, to
assess the efficacy. Further, we will augment our framework
with outlier removal and noise separation mechanisms to im-
prove the accuracy of dimension identification on complicated
datasets. We will apply our approach to the autoencoder-based
anomaly detection as the main application of our algorithm,
as well as compression.
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