
D2TLS: Delegation-based DTLS for Cloud-based IoT Services
Eunsang Cho

Seoul National University, Korea
escho@mmlab.snu.ac.kr

Minkyung Park
Seoul National University, Korea

mkpark@mmlab.snu.ac.kr

Hyunwoo Lee
Seoul National University, Korea
hwlee2014@mmlab.snu.ac.kr

Junhyeok Choi
Seoul National University, Korea
jhchoi2015@mmlab.snu.ac.kr

Ted “Taekyoung” Kwon
Seoul National University, Korea

tkkwon@snu.ac.kr

ABSTRACT
The Internet of Things (IoT) becomes proliferated due to the ad-
vances in embedded devices, wireless communications, and cloud
technologies. However, the security problem in the Internet will
be worsened in IoT services considering the constrained resources
of IoT devices. We propose a delegation-based DTLS framework
(D2TLS) for cloud-based IoT services. D2TLS aims to achieve mu-
tual authentication and to lower the burden of setting up secure
connections significantly while keeping the private keys of the
IoT devices secret. Leveraging the session resumption in the DTLS
standard and introducing a security agent, D2TLS achieves these
goals while requiring the modifications only on the client side. That
is, the cloud and PKI systems need not change to deploy D2TLS.
Numerical results show that D2TLS can achieve better performance
in terms of delay and energy consumption than the current DTLS
protocol in standalone mode.

CCS CONCEPTS
• Security and privacy → Security protocols; • Networks →
Network experimentation;

KEYWORDS
Delegation, DTLS, TLS, Internet-of-Things, Cloud Service

ACM Reference Format:
Eunsang Cho, Minkyung Park, Hyunwoo Lee, Junhyeok Choi, and Ted
“Taekyoung” Kwon. 2019. D2TLS: Delegation-based DTLS for Cloud-based
IoT Services. In Proceedings of International Conference on Internet-of-Things
Design and Implementation, Montreal, QC, Canada, April 15–18, 2019 (IoTDI
’19), 12 pages.
https://doi.org/10.1145/3302505.3310081

1 INTRODUCTION
The Internet of Things (IoT) is poised to provide connectivity to
almost every electronic device so that the devices can be monitored
and/or controlled in an automatic fashion. While the IoT is expected

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6283-2/19/04. . . $15.00
https://doi.org/10.1145/3302505.3310081

to help realize convenient and smart lives by tapping devices that
have not been online, the security issues in the current Internet may
be worsened due to the limited capabilities of the devices. Designing
a trustworthy networking framework will be essential for secure
IoT services. The prior frameworks for IoT networking over the last
few years have focused on the limited resources, and thus they have
considered proxy-based approaches, which is not suitable with the
end-to-end principle of the Internet. A vast majority of IoT devices
may be constrained in their capabilities; they may periodically go to
sleep mode (e.g., to save energy); the transmission rate is too slow
(e.g., ZigBee and LoRa); or the computing power is not sufficient
to handle many requests from clients. In such cases, perhaps their
sensory data will be stored to reverse proxy nodes, which will reply
to the requests on behalf of the devices.1 However, proxy-based IoT
services have the following problems: (i) an IoT device may have to
share its security information (e.g., its private key) with its reverse
proxy, which is the well-known key escrow problem, if it allows
the proxy to set up a security association with remote clients [7],
and (ii) the sensory data is also shared between the device and the
reverse proxy, which indicates another vulnerability by violating
the end-to-end principle, not to mention the data tampering issues.

Nowadays, the cloud-based IoT services have become wide-
spread, instead of proxy-based ones. For example, a survey reported
that 34 out of 39 IoT platforms take cloud-based or centralized ar-
chitectures [9]. The reason why the IoT and the cloud get along
with each other is two-fold: (i) resource-constrained IoT devices are
hardly capable of processing incoming queries as standby servers,
(ii) it is more practical for such constrained devices to send data in
an on-demand fashion to cloud systems depending on their capabil-
ity and availability (say, transmit their sensory data while they are
awake), and then the cloud will service the queries from clients. We
assume that it would be the norm that the cloud systems service IoT
requests on behalf of the resource-constrained devices, which cor-
responds to the device-to-cloud and back-end data sharing models
in IoT communications models [21].

Even though cloud-based IoT networking and services are pro-
liferated [6], we believe a security framework for such settings is
not well provisioned yet [18]. The insecurity of smart IoT devices
has been reported from Symantec with 50 different devices [1] and
from the measurement study with 28 devices [19]. While 68 per-
cent of the tested devices rely on cloud services, their control and
data messages may be exchanged over untrusted networks [1]. In
particular, around 19 percent of the tested devices communicate

1We assume a reverse proxy keeps the data of the corresponding devices, and is located
within the same administrative domain.

https://doi.org/10.1145/3302505.3310081
https://doi.org/10.1145/3302505.3310081

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada E. Cho et al.

without encryption, e.g., Transport Layer Security (TLS), and none
of the devices provides mutual authentication [1]. [19] investigated
28 devices and found that 39 percent of the devices do not use TLS
for communication. The report [1] argues that strong encryption
and mutual authentication be required even for resource-limited
IoT devices, and recommends efficient cryptographic methods such
as elliptic curve cryptography (ECC).

Standards developing organizations (SDOs) seek to develop new
networking platforms or frameworks for IoT services. However, as
to security, they usually adopt the current Internet security frame-
work like TLS and Datagram Transport Layer Security (DTLS). For
instance, the DICE working group in the IETF proposes to use
TLS/DTLS profiles [5] for IoT deployments with CoAP [2], which
is a lightweight version of HTTP, and the CoRE working group up-
dates CoAP for TCP, TLS, and WebSockets [3]. The ETSI OneM2M
consortium also suggests to use the TLS or DTLS [11]. Using DTLS
implies that the current authentication mechanisms like the public
key infrastructure (PKI) may have to be used in IoT environments.
However, due to typical IoT constraints like the energy budget,
hardware capability, and/or low speed communications, IoT de-
vices may not be able to handle the PKI and certificates timely.
While the DTLS is lighter than TLS, it may still incur the substan-
tial overhead on IoT devices, which will be investigated in this
paper.

In the same vein as the above Symantec report [1], we claim that
mutual authentication be crucial for secure IoT services. Consider-
ing the limited capabilities of IoT devices, we propose a delegation-
based DTLS framework (D2TLS) for cloud-based IoT services. The
central idea of D2TLS is to leverage the session resumption func-
tionality in the certificate-based DTLS standard [14]. D2TLS also
introduces a security agent to relieve a device of the setup burden
of DTLS connections. That is, the security agent sets up a secure
connection with the cloud system on behalf of the device. In D2TLS,
only the device is allowed to keep its private key (unlike [7, 10])
while performing mutual authentication of two endpoints. By keep-
ing the private key within IoT devices and delegating heavy com-
putations to agents, D2TLS solves the private key escrow problem
and provides an end-to-end connection model between a device to
the cloud.

2 BACKGROUND
The full DTLS handshake may impose a serious workload on the
two endpoints. To help mitigate the overhead, DTLS provides a
session resumptionmechanism bywhich the same negotiated secret
can be resumed if the two endpoints already have set up a DTLS
connection. Thus, it is conceivable for a resource-constrained IoT
device to delegate the first full handshake to some other entity, while
the device performs only the task of taking over the security context
for the DTLS session by exploiting the DTLS session resumption.

2.1 Delegation schemes for IoT devices based
on DTLS 1.2

Prior delegation schemes [7, 10] usually think of an IoT device as a
server. For the resource-constrained IoT devices, the availability as
a server could be enhanced by using delegation, which means the
IoT device (as a server) is not required to prepare for the incoming

connections all the time. The management of the security context
is also handled by delegation. However, we target cloud-based IoT
services, which means IoT devices operate as clients and cloud
systems provide “always-on” availability as servers. More detailed
analyses are shown as follows.

[7] introduced a delegation server for IoT devices; the delegation
server is responsible for the first full handshake on behalf of the
devices. Right after the first handshake is done, the delegation server
transfers the session ticket to the remote client, which then resumes
the DTLS session with the corresponding IoT device (i.e., a server).
Their scheme is proposed for highly resource-constrained devices.
Thus, the whole handshake process is done by the delegation server,
which is called “full delegation.” During the delegation process, all
the secret data are transferred via pre-configured out-of-band secret
exchanges. The weakest point of this scheme comes from the full
delegation. Trusting the delegation server by sharing the private
keys of the devices means granting full permissions (e.g. security-
related operations of the device) to the delegation server.

[10] targets medical sensor networks, where the delegation pro-
cess is performed at a gateway of the sensor network. In this scheme,
the medical sensors are servers, and hence remote clients connect
to the sensors directly. The sensors assumed in their work are also
highly resource-constrained, and thus they delegate the first DTLS
handshake to the gateway like [7]. However, [10] is different from
[7] in the following points. First, the gateway is within the same
administrative domain as the sensors; thus, it is easier to secure
the communications between them compared to [7], where the
delegation server can be located outside the domain. Next, only
the indispensable data is transferred to the sensor since it may not
have the capability of keeping all the session-related information.
However, [10] has the same problem as [7] since the private key of
a device is shared with the gateway.

2.2 Prevention of Secret Information Sharing
for Delegation

On the web, the delegation is used for enhancing end-user experi-
ences by locating the data nearby the end-user, and the aforemen-
tioned problem of sharing the private key also happens here. To
establish TLS connections between the delegate and clients, usually
three solutions are utilized: (i) private key sharing, (ii) certificate-
based approaches, and (iii) using a dedicated key server.

Private key sharing is a similar approach to previously-stated IoT
delegation schemes [7, 10]. Certificate-based approaches typically
exploit the structure of certificates, which means that inserting
multiple domain names into the origin certificate, or making a
shared certificate between the origin and the delegate [8]. Whereas
CloudFlare, a cloud service provider, devises a scheme in which
the cloud server does not need to know the private key of the
origin server, so-called ‘Keyless SSL’ [20]. CloudFlare introduces
a dedicated key server, which holds the private key of the origin
server. Note that the dedicated key server is controlled by the
origin server. By introducing the key server, Keyless SSL achieves
the authentication of the original server during TLS sessions even
if the cloud server sets up TLS connections with the clients. The
idea of keeping the private key in the origin server is adopted in
our design, to be detailed later.

D2TLS: Delegation-based DTLS for Cloud-based IoT Services IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

2.3 Differences in Session Resumption of TLS
1.2 and 1.3

First of all, the full handshake and session resumption processes of
DTLS are the same as those of TLS; thus we compare TLS 1.2 [4] and
TLS 1.3 [13] in this section. TLS 1.2 provides two types of session
resumption mechanisms: a session ID, and a session ticket [16]. The
session ID approach puts the liability of keeping security contexts
on the server, whereas the session ticket approach relieves the
server of such a burden by encoding the whole security context
into the session ticket. Thus, some prior studies [7, 10] promote
the latter since they view an IoT device as a server. However, as
we assume the cloud-based approach, an IoT device is deemed as a
client by default. Hence our approach can adopt both the session
ID and the session ticket. For TLS 1.3, the only allowed option is
the session ticket with pre-shared keys.

The session resumption of TLS 1.3 provides the forward secrecy
by utilizing the key share option, which is not possible in TLS 1.2.
Using the key share means that the key exchange and agreement
are required for each resumption, causing additional delays in TLS
1.3. To sum up, the session resumption is lightweight in TLS 1.2;
however, the forward secrecy is possible only in TLS 1.3.

Our proposal will be substantiated under the DTLS 1.2 environ-
ments; however, it could be easily applicable to DTLS 1.3 (Draft
28) [15], which is the latest version at the time of writing. For in-
stance, DTLS 1.3 supports Elliptic-curve Diffie-Hellman Ephemeral
(ECDHE) by default, which is also adopted by the proposal. The
session ID is no longer supported with DTLS 1.3. However, as the
session ticket is supported with DTLS 1.3, the proposal can utilize
the session ticket instead of the session ID for DTLS 1.3.

3 MEASUREMENT OF IOT PRODUCTS
To design D2TLS, the communication patterns of the cloud-based
IoT services are needed to be analyzed. As DTLS is based on the
session concept, an IoT service can easily fit if its session consists
of a series of successive packets. In order to analyze the commu-
nication patterns of cloud-based IoT services, we measured two
commercial IoT products: (i) a smart home monitoring system, and
(ii) a smart watch.

3.1 Smart Home Monitoring System
The usage of a smart home monitoring system is manifold: watch
against unexpected intrusions, check whether the doors and win-
dows are open or closed, detect any moving objects, monitor a baby,
control the temperature and humidity, and so on.

We measure the traffic in a Xiaomi’s smart home system, which
consists of a door (open/closed) detector, a temperature/humidity
monitor, a motion detector, a push button, and a smart gateway.
The communication interface of the system is IEEE 802.15.4. We use
a TI CC2531 packet sniffer to capture the traffic in the IEEE 802.15.4
network. All the sensor devices are connected to the gateway via
IEEE 802.15.4, while the gateway has connectivity to the cloud
system via IEEE 802.11 aswell as IEEE 802.15.4 for the home Internet.
A user can access the sensory data in the cloud system using a
smartphone app. Note that there is no encrypted traffic; all the
packets carry the plaintext payload.

Desk Desk
Experimentation

Space Desk

DeskDeskDeskP
rin

ter

Main Door

Temperature/Humidity Monitor

Motion Detector
Door
Detector

Push Button

Figure 1: The placement of the sensor devices of the Xiaomi
smart home system is depicted.

Table 1: Number of packets to be analyzed for each sensor
device of the Xiaomi smart home system is shown; the pack-
ets are captured over 24 hours.

Number of Packets
Door Detector 209

Temperature/Humidity Monitor 126
Motion Detector 131
Push Button 45

The experiments on the smart home system were performed
in our lab office with six people as depicted in Figure 1. The door
detector and push button are placed at the main door of the lab,
and the motion detector and temperature/humidity monitor are
installed at the main corridor inside the lab office. We believe that
it mimics usual interactions of a small group of people.

In our measurement analyses, we focus on the distribution of the
lengths and the frequency of sessions between the sensor devices
and the gateway (towards the cloud) for the following reasons. Com-
pared to consecutively transmitted UDP datagrams (which helps
to keep a single session), DTLS sessions require more resources of
IoT devices for creating and maintaining sessions. In particular, a
session creation consumes more resources than in-session commu-
nications due to the heavy computations of public-key operations
in the DTLS handshake process. Thus, we believe the overhead of
DTLS sessions is dependent on their lengths and frequency.

Figure 2 shows the distributions of inter-packet times of the four
devices in CDF. Since the DTLS protocol encrypts application-layer
packets, we filtered out IEEE 802.15.4 beacon and ACK messages
from 6,622 captured packets, and then we used 511 packets for
analysis. Table 1 shows the number of packets analyzed for each
device. All the subfigures of Figure 2 except 2(c) show that over
50% of data points are distributed close to 0 seconds (less than
10 seconds), which indicates that amajority of packets are generated
successively. These successive packets can be considered as traffic
belonging to a single session when we apply the concept of DTLS
sessions. After the successive packets, the separate sessions can
be identified by long inter-packet times. At least, approximately
30% of inter-packet times are longer than 100 s for every graph
in Figure 2, which means that there are many separate sessions
conceptually within the 24 hours of measurements.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada E. Cho et al.

10−3 10−2 10−1 100 101 102 103 104

Inter-packet Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Door Detector

10−3 10−2 10−1 100 101 102 103 104

Inter-packet Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Temperature/Humidity Monitor

10−3 10−2 10−1 100 101 102 103 104

Inter-packet Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) Motion Detector

10−1 100 101 102 103 104

Inter-packet Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(d) Push Button

Figure 2: The CDFs of inter-packet times of the 4 devices in the Xiaomi home network are plotted.

60 600 1800 3600
Timeout Values (s)

0

20

40

60

80

100

120

#
of

S
es

si
on

s

Push Button
Temperature/Humidity Monitor
Door Detector
Motion Detector

Figure 3: Estimated session frequency of the Xiaomi net-
work for 24 hours is plotted as the timeout value changes.

Let us now estimate the lengths and frequency of separate ses-
sions from the above measurements of the inter-packet times. We
seek to find how long a session lasts from the measured plaintext
traffic. That is, when we set up a DTLS session, we would like to
infer how many consecutive packets will be covered in a single
session. Note that there is no concept of sessions when sensors
communicate with the gateway in plaintext. Therefore, based on
the measured plaintext traffic, the session information/duration is
estimated. Figure 3 shows the estimated frequency of sessions as
we vary the threshold (of inter-packet time) to separate different
sessions. As there is no fixed/standard value for the threshold of
session separation, we use the widely-used session timeout values
of HTTP and application servers in general Internet services. The
timeout thresholds are set to 60s, 600s, 1800s, and 3600s, which
are adopted from the minimum and default values of Microsoft IIS
servers, the default values of Apache HTTP servers and Apache
Tomcat servers, respectively. If we set the threshold to 60s, there
are 101 sessions in the motion detector. Obviously, the numbers
of estimated sessions decrease sharply as the threshold increases
across the four sensors, except for the push button. Considering the
constrained resources and high burdens of wireless communica-
tions in IoT environments, the session timeout values of IoT devices
may as well be shorter than those of HTTP servers in the general
Internet environments. Therefore, we believe that the durations of
sessions in IoT environments are likely to be close to that of the
minimum timeout value (60s) in the graph.

Figure 4 shows the session length distribution when the session
timeout value is set to 60s. The means of session lengths are 8.40s,
0.39s, 0.56s, and 0.20s in the four sensors, respectively. However,
most of the session lengths are clustered at a few distinct values
smaller than 1s. In Figure 4, some of the session lengths are under
milliseconds order. It means that there are very short packets whose
inter-packet time is larger than the threshold (60s), which can be
a default session length in the real D2TLS sessions. The session
length distribution reveals that a vast majority of the sessions are
short, and hence the overhead of setting up a DTLS connection for
each session can incur some substantial workload.

3.2 Smart Watch
A smart watch is a wearable device that is usually connected to a
smartphone, which in turn is connected to cloud services via its
WiFi or 3G/LTE interface. For example, smart watches using the
Android Wear platform require the Internet connection through
smartphones to Google services.

We measure the traffic between a Motorola’s Moto360 smart
watch and a smartphone over Bluetooth. We rely on the Bluetooth
HCI snoop feature in the Android OS, so that we can capture all
the traffic between the smart watch and the smartphone. The mea-
surement is again focused on the lengths and frequency of commu-
nication sessions as described in Section 3.1.

Figure 5 shows the inter-packet times in seconds during the
measurement for 24 hours in CDF. The total number of captured
packets is 15,202. Since DTLS encrypts packets at the application
layer, we filter out messages not containing application data. That
is, we exclude Bluetooth signaling messages, which leaves us 2,422
packets for analysis. As shown in Figure 5, most of data points are
concentrated close to 0s, and the other data points are scattered
between 0s and 1800s. Figure 5 shows a similar tendency to Figure 2,
but the concentration level of successive packets is stronger since
almost 80% of inter-packet times are shorter than 1s. Note that
there are a number of applications running inside the smart watch,
which was factory-reset and synchronized before the measurement.
For experimental purposes, only a Google account is activated and
there is no app installed other than pre-installed ones.

Let us analyze the lengths and frequency of individual sessions.
Figure 6 shows the estimated session frequency by varying the
threshold of inter-packet time to identify separate sessions. The
same timeout values in Section 3.1 are set for session separation.
Maximum 88 sessions are identified with the 60s threshold.

D2TLS: Delegation-based DTLS for Cloud-based IoT Services IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

10−710−610−510−410−310−210−1 100 101 102

Session Length (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Door Detector

10−3 10−2 10−1 100

Session Length (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Temperature/Humidity Monitor

10−710−610−510−410−310−210−1 100 101 102

Session Length (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) Motion Detector

10−6 10−5 10−4 10−3 10−2 10−1 100

Session Length (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(d) Push Button

Figure 4: The CDFs of session lengths of the four sensors in the Xiaomi system for 24 hours are plotted.

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

Inter-packet Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 5: Inter-packet times of a smart watch for 24 hours
are shown in CDF.

60 600 1800 3600
Timeout Value (s)

0

20

40

60

80

100

#
of

S
es

si
on

s

88

58

3 1

Figure 6: Estimated session frequency of a smart watch for
24 hours is plotted as the timeout value changes.

Figure 7 shows the session length distribution when the session
timeout value is set to 60s. The mean of session lengths is 29.25s,
but about half of the session lengths are concentrated at a single
value: approximately 35s. It shows that the other half of the sessions
are shorter, but they are still longer than those of sessions of the
sensors in the Xiaomi system.

10−3 10−2 10−1 100 101 102 103

Session Length (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 7: Session lengths of a smart watch for 24 hours are
plotted in CDF when the threshold of session separation is
60s.

4 DELEGATION-BASED DTLS (D2TLS)
It is revealed that the measured IoT systems based on cloud services
typically communicate in short durations as analyzed in Section 3.
For instance, in case of condition-triggering sensors, the sensory
data would be sent only when an activity/phenomenon of interest
is detected. That is, the packet sizes of the sensory data and session
durations are usually short.

As mentioned earlier, heavy computations occur when a DTLS2
connection is created during its handshake process. Our measure-
ment study, however, reveals that the communication patterns of
cloud-based IoT services have intermittent and short sessions. Thus,
if we have to set up a DTLS connection for each session, the bur-
den of a session creation would be huge. To lower the burden on
IoT devices, we leverage the session resumption feature in DTLS
and introduce an entity for delegation—a security agent. However,
unlike [7, 10], D2TLS does not give the private key of an IoT device
to the security agent, and hence there is no key escrow problem.

4.1 D2TLS Framework
The goals of the D2TLS framework are (i) to make the private key of
an IoT device not be shared with other entities, and (ii) to lower the
burden of handling the DTLS handshake on the device significantly.

2Even though D2TLS can be applied to TLS as well, we proceed with DTLS for sake of
exposition in the remainder of this paper.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada E. Cho et al.

Client (IoT SoC) Security Agent Server

Delegation Request

ClientRandom

ClientHello, ClientRandom, CipherSuites

ServerRandom

ServerRandom, SessionID, ServerCert, ServerDHParam, ServerSignature

MessageHash to be signed

CertificateVerifySign

Signature from Client

ClientDHParam, ClientSignature, ClientCert

CertificateVerify

Session Key Creation

ClientFinished

ServerFinished

SessionKey, SessionID

msc Delegation-based full DTLS handshake

2

(a) Delegation-based full DTLS handshake

Client (IoT SoC) Security Agent Server

ClientHello, SessionID : Session Resumption Request

Session Resumption

ServerHello, SessionID

ChangeCipherSpec, ServerFinished

ChangeCipherSpec, ClientFinished

msc End-to-end session resumption

1

(b) End-to-end session resumption

Figure 8: Message flows for the D2TLS framework and the
session resumption for the cloud-based IoT services are de-
picted.

We assume that the mutual authentication is to be achieved in IoT
environments, since automated machine-to-machine communica-
tions will be prevalent. That is, human supervisions (i.e., typing
ID/password) are almost infeasible in IoT settings. Also, we seek to
retain the current DTLS standard as much as possible.

As shown in Figure 8(a), the client part of a DTLS handshake
is handled at the security agent (on behalf of the device), which is
assumed to be located within the same IoT domain as the device.
We assume a secure channel between the device and the security
agent before the message flow in Figure 8(a) starts. At first, the
IoT device, who wishes to establish a secure session with a remote
server in the cloud, sends a delegation request message to the
security agent. Then the agent initiates a certificate-based full DTLS
handshake with the remote server on behalf of the IoT device. As

D2TLS performs mutual authentication, the security agent should
create a signature for ECDHE (in Figure 8(a)) on behalf of the device
during the handshake. For this, the security agent needs the private
key of the device. At this moment, the agent forwards the related
information to the IoT device and then the IoT device decrypts/signs
the given information. After the device replies back to the agent,
the agent resumes the handshake. Other parts in the current DTLS
standard remains unchanged. Finally, the agent hands over the
session context to the IoT device for the session resumption and
wipes out the session context from its memory.

With D2TLS, the IoT device needs to carry out only the decryp-
tion and signature generation in terms of computations. All the
other tasks are performed by the security agent. As for the remote
server, the whole handshake process is exactly the same as the
current DTLS standard. The session resumption is not changed
from the standard. Modifications are made at the security agent
and the IoT device. Therefore the modifications are confined within
a local IoT domain, which implies the easy deployability of D2TLS.

4.2 End-to-End Secure Connection by Session
Resumption

The end-to-end principle is one of the tenets of the Internet. It
is also applied to security-related protocols and mechanisms; the
notable example is the authentication of two endpoints. Based on
the authentication, DTLS provides confidentiality and data integrity.

There are two ways of resuming a DTLS session. One is the
abbreviated handshake [4] and the other is the session resump-
tion without server-side state [16]. The former requires both of
the endpoints maintain the session state, and hence the session
is resumable only with the session ID. The latter issues a session
ticket including its session state, and the session is resumable with
the session ticket, which removes the overhead of maintaining
the session information (on the server side). A device in D2TLS
takes the former approach and works as a client in cloud-based
IoT environments, which means the number of connections would
be limited by the number of the counterpart servers in the clouds.
Moreover, the size of the session ticket for a connection is up to
64 KB, whereas a session ID takes up to 32 bytes. For TI CC2538
device in our experiments in Section 6, which has 32 KB of RAM,
the session ticket approach does not fit to the RAM in the worst
case, however, the session ID approach does fit. For TI CC3200,
which has 256 KB of RAM, both approaches can be applied. Thus,
we believe it is not a significant burden that maintains a small num-
ber of connections on an IoT device with the session ID approach.
Also, the session ID is much smaller than the session ticket, which
is suitable for low bitrate wireless networking.

As shown in Figure 8(b), the device sends a ClientHello using
the session ID to the server. After matching its session cache with
the session ID, the server replies back a ServerHello with the same
session ID if the server is willing to re-establish the connection. If
the session ID is not matched, the server replies back a ServerHello
with a new session ID, and the IoT device gives up this resumption
attempt and restarts a new session as described in Section 4.1. The
other parts of the current DTLS standard remain unchanged.

D2TLS: Delegation-based DTLS for Cloud-based IoT Services IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Overall, the D2TLS framework makes the device keep its private
key, and lowers the burden of setting up a secure connection sig-
nificantly. By leveraging the session resumption, D2TLS holds the
end-to-end communication/security model. The processing over-
head for keeping the private key will be investigated in Section 6.

5 SECURITY CONSIDERATIONS
We assume an adversary who controls one of the entities; a security
agent, a cloud server, or an IoT device. The adversary’s goal is
to perform an impersonation attack or to eavesdrop the traffic by
using the compromised entity. As the security mechanisms of either
the cloud server or the IoT device are based on DTLS, we focus on
the threat analyses of the security agent which is a unique entity
of D2TLS.

Compromised security agent: If an adversary compromises a
security agent (of an IoT device), she may seek to act as the device
and to establish a connection with the server in the cloud. As the
mutual authentication is required for D2TLS, the private key of the
IoT device is essential for the connection establishment. However,
as the adversary does not have the private key of the device, she
cannot set up a D2TLS connection by impersonating the device.

Another attack can take place as follows. The adversary can
obtain the security context (of a device) in the agent if the agent has
been compromised by the adversary. From the context (e.g. master
secret), the adversary may be able to exchange DTLS messages
with the cloud server. However, this impersonation attack of the
adversary can be detected by the IoT device and/or the server since
both of the endpoints will check the DTLS epoch and the sequence
number at the record layer. The epoch is a counter value that in-
crements whenever the cipher changes. The sequence number is
reset to 0 when the new epoch starts, and increments for each
record. If the adversary does not know the next sequence number
exactly (i.e., not being a gateway node on the path), the server
could detect the impersonation. If the adversary knows the next
sequence number (i.e., being a gateway node), the IoT device will
fail to resume the previous session and hence the masquerading
attack can be detected afterwards. Thus it is important to keep
track of the DTLS epoch and sequence number explicitly, which is
standardized in [14]. Also, the security context should be discarded
at the security agent after a handshake considering that the agent
might be compromised later (in Section 4.1).

The operator of the IoT domain should watch the security agent
in order to check whether the agent is compromised. If the security
agent exchanges traffic with the cloud server even if the DTLS
connection setup (on behalf of the device) is over, it is suspected
that the (compromised) agent may try to impersonate the device.
It is desirable to monitor and analyze the communications of the
security agent with the entities outside the domain.

For passive eavesdropping attacks, the compromised security
agent can eavesdrop the traffic if it is on the path (say, a gateway)
between the device and the server. To thwart such attacks, we can
place the agent out of the data path. Even if the agent is on the path,
TLS 1.3 provides the forward secrecy by updating the encryption
key at every resumption as described in Section 2.3.

Compromised cloud server: If an adversary compromises a
server in the cloud, the adversary could gain access to security

Table 2: Comparison of IoT Devices under Evaluation

SoC TI CC3200 TI CC2538

Microcontroller ARM Cortex-M4 ARM Cortex-M3
@ 80MHz @ 32MHz

RAM 256KB 32KB
Flash Memory 1MB 512KBStorage

Radio IEEE 802.11b/g/n IEEE 802.15.4
Transceiver 2.4GHz 2.4GHz

contexts which were established previously. Then the adversary
could resume any connection with the device since the session
resumption process does not require re-authentication by default.
Also the private key of the server could be taken by the adversary in
this case. However, this attack can occur regardless of the proposed
scheme. To mitigate the problem, the lifetime of the session should
be made shorter. Thus there is a tradeoff between the security
against the cloud compromise and the D2TLS connection setup
overhead, which is also the same for DTLS without delegation.

Compromised IoT device: If an adversary compromises the
device, the adversary could access its private key. Therefore the
compromised device should be sanitized and the new public and
private key pair should be re-generated. Again, this attack could
exist regardless of the delegation.

6 EVALUATION
We compare D2TLS with the current DTLS handshake performed
by a standalone device (i.e. without delegation).

6.1 Evaluation Environments
D2TLS is implemented for numerical evaluations whose test setting
consists of IoT clients, a security agent, a cloud server, and an OCSP
server3.

To investigate the feasibility and performance of D2TLS, we use
two products for IoT clients: TI CC3200 SoC and TI CC2538 SoC as
shown in Table 2. The security agent is co-located with a gateway
to the Internet. The agent is a machine with Intel Core i5-4690 CPU
at 3.5GHz clock speed and 8GB of RAM. The agent is connected
to a TI CC3200 device through a WiFi AP. Or the agent uses a
USB interface to connect to a TI CC2538 node, which in turn is
connected to another TI CC2538 node via IEEE 802.15.4.

We consider LAN and WAN environments between the IoT do-
main (i.e., the device and security agent) and the cloud/OCSP server.
In LAN settings, the cloud server and OCSP server are co-located
in a machine equipped with Intel Xeon E3-1245v3 CPU operating
at 3.4GHz and 16GB of RAM. The IoT clients and the security agent
are located in the same room; the cloud server and OCSP server
are located in the other building in the same campus network. The
average RTT between the security agent to the cloud/OCSP server
is 1.366ms.

In WAN environments, the cloud server and OCSP server are
virtual machines (VMs), each of which has 8 virtual cores of Intel

3An online certificate status protocol (OCSP) server keeps track of the validity of
certificates in charge.

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada E. Cho et al.

Table 3: Delay of a full DTLShandshake at an IoT devicewith
256-bit ECC key is shown in LAN environments (in ms).

Setting Full Handshake Session
Resumption

TI CC
3200

DTLS 2,920
57D2TLS 851

(Signature: 414)

TI CC
2538

DTLS 63,161
3,902D2TLS 16,748

(Signature: 9,903)

Xeon E5-2666v3 and 15 GB ofmainmemory. The locations of the IoT
clients and security agent are in the campus network in east Asia.
However, the location of the VMs is in a data center in Oregon, USA.
The average RTT between the security agent to the cloud/OCSP
server is 167.888ms.

The settings to implement the certificate-based DTLS handshake
are as follows. We use OpenSSL 1.0.1p for creating the certificates
and the OCSP server application. For security operations, all the
entities rely on WolfSSL 3.7.0 except for CC2538 node. Since the
size of the binary WolfSSL is bigger than the available RAM size
of CC2538, we use tinyDTLS 0.8.2 and the relic toolkit only for
the CC2538 device. The ciphersuite used for evaluation is ECDHE-
ECDSA-AES128-CCM-8. Each plot is the average of five measure-
ments, unless stated otherwise.

6.2 Delay
As shown in Table 3, the delay of a full DTLS handshake in LAN en-
vironments is measured from two viewpoints: (i) with and without
delegation, and (ii) two different IoT devices.

For the TI CC3200 device, the full handshake time is compared
between (i) DTLS (TI CC3200 sets up a DTLS connection by itself)
and (ii) D2TLS (the security agent sets up a DTLS connection, and
then TI CC3200 takes over). The delay of the D2TLS handshake
consists of a delegation request from the device to the agent, a
delegated handshake at the agent, a signature operation at the IoT
device, a transmission of the session context to the device, and a
session resumption from the IoT device to the remote server as
shown in Figures 8(a) and 8(b). The full handshake in D2TLS takes
851ms, while the one in DTLS takes 2,920ms. Among the delay
of the handshake in D2TLS, the signature-related operations take
414 ms, which means the burden of signing operations are about a
half of the total delay. The delay for the session resumption of TI
CC3200 in D2TLS takes only 57ms. The delay of the full handshake
in D2TLS is substantially reduced by 70.9% due to the delegation
handshake, and the session resumption takes a short time at TI
CC3200.

For TI CC2538, the full handshake in DTLS takes 63,161ms. The
full handshake in D2TLS takes 16,748ms and the session resumption
takes 3,902ms on average. Recall that TI CC2538 has very limited
resources. However, compared to the TI CC3200 results, the initial
handshake time with TI CC2538 is not so long, considering the
session resumption time. Notice that the reduction ratio (73.5%)
of the full handshake time of TI CC2538 is higher than that of TI

Table 4: Delay of a full DTLShandshake at an IoT devicewith
256-bit ECC key is shown in WAN environments (in ms).

Setting Full Handshake Session
Resumption

TI CC
3200

DTLS 3,581
537D2TLS 1,840

(Signature: 415)

Table 5: Energy consumption of a DTLS/D2TLS handshake
in LAN settings at IoT devices with 256-bit ECC key is
shown.

Setting Delay Power Energy Con-
(ms) (mW) sumption (mJ)

DTLS 2,920 234 683
TI CC D2TLS 851 276 235
3200 Session 57 364 21Resump.

DTLS 63,161 573 36,161
TI CC D2TLS 16,748 591 9,898
2538 Session 9,903 592 5,863Resump.

CC3200 (70.9%). It means that the delegation helps to reduce the
delay for resource-limited devices. TI CC2538 has a crypto module
for ECC. The signature generation time could be reduced with the
crypto module, which will be discussed in Section 7.3.

The delay of a full DTLS handshake in WAN environments with
the TI CC3200 device is shown in Table 4. The full handshake delays
are compared between D2TLS and DTLS. The handshake delay is
increased by 661 ms for DTLS, and 989 ms for D2TLS, compared
to the LAN settings. The larger increase in D2TLS comes from the
session resumption, which is not needed in DTLS. The delay for
the session resumption is 537 ms, which is increased by 480 ms
compared to the LAN settings. Even though the increment of the
handshake delay is larger, D2TLS outperforms DTLS about two
times faster with TI CC3200.

6.3 Energy Consumption
Wemeasure the average power consumption of the IoT device by us-
ing a Monsoon power monitor. As shown in Table 5 in LAN settings,
D2TLS consumes slightly more power than DTLS in TI CC3200.
However, DTLS consumes approximately 2.9 times of energy than
D2TLS, since the delay of DTLS is around 3.4 times longer than that
of D2TLS. The third row in Table 5 shows the delay/power/energy
incurred during the session resumption part in the full handshake in
D2TLS. The session resumption consumes only 21 mJ of energy, and
it is about 3% and 9% of energy for D2TLS and DTLS, respectively.
The power consumption of the session resumption is higher than
the average power consumed during the full handshake process.
However, it takes a small portion in contrast to the time in the full
handshake, and hence the session resumption is energy-efficient.

The average power and energy consumptions of TI CC2538 dur-
ing DTLS and D2TLS handshakes show similar tendency with ones

D2TLS: Delegation-based DTLS for Cloud-based IoT Services IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Table 6: Energy consumption of a DTLS/D2TLS handshake
in WAN settings at IoT devices with 256-bit ECC key is
shown.

Setting Delay Power Energy Con-
(ms) (mW) sumption (mJ)

DTLS 3,581 234 838
TI CC D2TLS 1,840 249 458
3200 Session 537 285 153Resump.

Table 7: Flash Storage and RAM footprints for a full hand-
shake in DTLS and in D2TLS with 256-bit ECC key at IoT
Devices are shown in bytes.

Setting
Flash
Usage

(text+data)

RAM
Usage

(data+bss)

text
+data
+bss

Max.
Dynamic
Memory
Usage

TI CC3200
(DTLS) 116,832 47,372 161,892 21,493

TI CC3200
(D2TLS) 99,144 47,388 144,204 15,237

TI CC2538
(DTLS) 77,330 14,253 91,033 1,960

TI CC2538
(D2TLS) 73,550 14,849 87,849 1,148

of TI CC3200 as shown in Table 5. Note that the session resumption
takes about 59% of D2TLS energy consumption due to its large
delay.

In WAN settings with the TI CC3200 device, the measured power
consumptions are slightly reduced compared to the ones in LAN
settings, except for DTLS as shown in Table 6. The IoT device may
go into the idle/sleep state more frequently when it does not have
loads for computations or communications, and that is why D2TLS
and the session resumption consume less power than DTLS since
they are lightweight in terms of computations and communications.

6.4 Code Size and Memory Requirements
Considering the resource constraints of the devices, the sizes of
compiled binary and memory usage should be investigated. As
shown in Table 2, TI CC3200 has 256KB RAM, and TI CC2538 has
only 32KB RAM. Their flash memory sizes are larger than RAM
sizes, respectively. Therefore the major limitation comes from the
RAM usage for both static/predefined and dynamic memories.

As shown in Table 7, D2TLS at TI CC3200 takes less flash and dy-
namic memories, compared to DTLS. The compiled code of D2TLS
is reduced since it requires less public-key related operations. TI
CC3200 adopts the Energia OS, which uses its dynamic memory
mainly for heap space. To find out the maximum usage of dynamic
memory, we change the size of the minimum heap space that can
make the program run. The total memory requirement of D2TLS is
62,625 bytes.

25 50 75 100 125 150
Session Frequency for 24H

0

2000

4000

6000

8000

10000

12000

S
es

si
on

O
ve

rh
ea

d
(m

s)

4288

5713

7138

8563

9988

11413

2219

3644

5069

6494

7919

9344

DTLS
D2TLS

Figure 9: Session overhead for 24 hours as we change the
session frequency is plotted in ms.

The memory usage of TI CC2538 cannot be compared with those
of TI CC3200 since different DTLSmodules andmicrocontrollers are
used. The compiled code of D2TLS is reduced due to the same reason
as the TI CC3200 case. TI CC2538 adopts the Contiki OS, which has
no memory allocator and heap space but it has a stack space only.
The maximum dynamic memory is measured by memory dump
at the end of the handshake, by comparing zeroed memory dump
before the handshake. The total memory requirement of D2TLS is
15,997 bytes only.

6.5 Session Overhead Depending on Session
Frequency and DTLS Context Lifetime

So far, we evaluate the overhead of a single handshake of a session of
D2TLS and DTLS. For sake of clarity, we introduce a notion, DTLS
context lifetime, which means how long the DTLS connectivity
and security context will be maintained in a device or a server.
Meanwhile, a session refers to a burst of packets whose inter-packet
arrival time is less than a threshold. Usually, a session duration is
smaller than the DTLS context lifetime even though both values
are configurable. The session overhead for 24 hours with varying
the session frequency and DTLS context lifetimes can be calculated
based on our measurement results in Section 3.

The session overhead accumulated for 24 hours as we vary the
session frequency is plotted in Figure 9. Here, the session frequency
means how often sessions appear between the IoT device and the
cloud server. The session overhead is calculated as the sum of delays
of DTLS session creations (i.e., establishments) and of resumptions.
In this experiment, the lifetime of a DTLS context is set to 24 hours
and the delays are measured from TI CC3200 with the LAN config-
uration. Notice that D2TLS has the lower overhead than DTLS due
to the shorter handshake delays. However, the relative reduction
in overhead is getting smaller as the session frequency grows since
the difference in the overhead comes from the handshake delay
which is fixed and is related to the lifetime of a DTLS context.

Figure 10 shows the accumulated session overhead for 24 hours
as we vary the lifetime of a DTLS context. The session frequency is
set to 100 (for the 24 hours) and the delays are measured from TI
CC3200 with the LAN configuration. The reduction of the session
overhead of D2TLS over DTLS grows as the lifetime of a DTLS

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada E. Cho et al.

6 12 18 24
Lifetime of DTLS Context (hours)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
es

si
on

O
ve

rh
ea

d
(m

s)

17152

11426

9517
85638876

7288
6758 6494

DTLS
D2TLS

Figure 10: Session overhead varying lifetimes of a DTLS con-
text for 24 hours is plotted in ms.

context decreases since the shorter lifetime brings the more session
creation that is substantial to the session overhead. With 6 hours
of session ID, the overhead of D2TLS is approximately 48% lower
than one of DTLS.

Overall, the accumulated overhead is notably reducedwithD2TLS
over DTLS. Especially the reduction of the overhead grows with as
the lifetime of a DTLS context gets shorter. It is advised to shorten
the context lifetime considering the attacks to the session mas-
ter key. However, the short lifetime incurs the more handshake
overhead, which increases inefficiency. D2TLS reduces the first full
handshake overhead of a DTLS session, and thus it does not incur
much overhead even in the short context lifetime. Therefore D2TLS
is suitable for the short lifetime of a DTLS context with the repeated
session resumptions in terms of efficiency and security.

7 DISCUSSIONS
7.1 IoT device as a Server
In cloud-based IoT services, an IoT device typically operates as a
client. While D2TLS assumes a device to be a client, it can also serve
as a server (i.e., the cloud is not needed). If the device operates as a
server, a remote client needs to know the server address information.
The IETF CoRE group suggests resource discovery mechanisms [2,
17] for this purpose, which can be used in D2TLS.

Using any resource discovery mechanisms, the remote client can
find out the IP address of the device/server. The problem is that the
device may not be able to perform a full DTLS handshake by itself.
Our idea is to use Mobile IPv6. We assume there is a home agent
in the same subnet as a device. When the home agent receives a
ClientHello message destined to the device, it informs the remote
client of the IP address of a security agent by sending a Binding
Update message in Mobile IPv6. In this way, the client is ready to
receive messages from the security agent. The home agent also
delivers the ClientHello message to the security agent as well as to
the device. Then the device sends a delegation request message in
Figure 8 if it wishes to proceed. Once the security agent receives the
delegation request from the device, it will process the ClientHello
and continue the full handshake with the remote client. The rest of
the handshake and session resumption will be the same.

Table 8: Delay of a full TLS 1.3 handshake at TI CC3200
with 256-bit ECC key is shown in LAN environments (inms).
‘PSK’, ‘0-RTT’, and ‘ECDHE’ mean the preshared key, 0-RTT,
and ECDHE option enabled, respectively.

Mode Handshake Session Resumption
PSK-ECDHE 4,082 842

PSK 3,880 649
0-RTT-ECDHE 3,904 860

0-RTT 3,879 694

While the session resumption in D2TLS is made by the session ID
only (in Section 4), the session ticket extension [16] of the session
resumption in DTLS can be considered for server mode operations
of the device. This extension allows the client to hold its session
context, while the server need not maintain its previous sessions.
Therefore it helps an IoT device to act as a server.

7.2 Considering DTLS 1.3 Session Resumption
As the DTLS 1.2 results in LAN environments in Section 6.2, the
delay of a full DTLS handshake (2,920ms) is approx. 51 times larger
than the delay of a session resumption (57ms) on the TI CC3200
device. However, it is expected that the session resumption of DTLS
1.3 would be much slower than 1.2, because of adopting the pre-
shared key and key share options. As stated in Section 2.3, the
terms DTLS and TLS are interchangeably used when we focus on
handshaking.

WolfSSL posted that TLS 1.3 has a performance degradation in a
resumption handshake, compared to TLS 1.2 [22]. The performance
trade-off results from decrypting a session ticket, performing more
encryption/decryption, and processing hashing operations in a TLS
1.3 handshake. It is stated that a TLS 1.3 resumption handshake is
more than 20% slower when running a client and a server on the
same computer. Also, TLS 1.3 performs the key share option, which
takes 13 times as long as TLS 1.2 resumption in case of ECDHE
and at least twice as slow in case of Elliptic-curve Diffie-Hellman
(ECDH) (2048-bit DH parameters in both cases).

To evaluate the performance of TLS 1.3 handshake and session
resumption in our evaluation environment, we use WolfSSL 3.12.0
that supports TLS 1.3 (Draft 18) [12], which has minor differences
in implementation from the current RFC [13] in terms of session
resumption. The other settings are not changed from Section 6.
Table 8 shows the results. The delays of both a full TLS handshake
and a session resumption are increased compared to those of DTLS
1.2. Especially the session resumption takes much more execution
time, which is approximately 11 to 15 times longer than before.
Enabling the key share option causes approximately 200ms more
time, while improving the confidentiality by keeping the forward
secrecy.

The session resumption is beneficial in terms of delay since the
delay of a full DTLS handshake is much longer than that of a session
resumption. For TLS 1.3, the delay ratio of a full handshake to a
session resumption is in range of 4.5 to 6.0 from our results. In
comparison with the delay ratio of DTLS 1.2 (around 51), the gain
of a session resumption over a handshake is reduced in TLS 1.3. In

D2TLS: Delegation-based DTLS for Cloud-based IoT Services IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

Table 9: Execution time of sign/verify operations at TI
CC2538 is measured with 256-bit ECC key (in s).

Setting Signature Verification
Software-only 9.126 20.534

Hardware-accelerated 0.34 0.70

general, a session resumption is more preferable as the delay ratio
of a full handshake to a session resumption becomes higher.

In the D2TLS framework, the handshake delay is significantly
reduced due to the delegation mechanism. Obviously, the full hand-
shake is more secure than the session resumption. Therefore, consid-
ering the trade-off between the security and delay, the IoT operator
may prefer the full handshake to the session resumption by setting
the DTLS context lifetime shorter.

7.3 Hardware-assisted IoT Security
We measure the execution times of cryptographic operations at TI
CC2538, which is the most expensive part in D2TLS in terms of
computational cost. Section 6.2 indicates that signing operations at
TI CC2538 take significant time. The signature generation time costs
approximately 59% of the total delay, which is about 10s. However,
the device has a dedicated hardware crypto module, which can
expedite public key operations including ECC and RSA.

Table 9 shows that the execution times for sign/verify opera-
tions on a message of 256 bytes for software-only and hardware-
accelerated implementations, respectively. For the signature gener-
ation time, the hardware-accelerated case costs only 0.34s, which is
approximately 3.7% of that of the software-only one. The signature
verification time of the hardware-accelerated implementation is
also reduced to approximately 3.4% of that of the software-only
one. It demonstrates that an IoT device that has a hardware crypto
module can process signature-related operations much faster in
D2TLS.

Nevertheless the crypto hardware does not reduce the benefits
of D2TLS. A majority of IoT SoCs with a crypto hardware module
currently supports the AES acceleration only, not ECC/RSA. Even if
an ECC-capable crypto hardware is adopted with IoT SoCs, D2TLS
can still leverage the higher performance of a high end machine
in terms of communication and computation overheads. In other
words, the hardware acceleration enhances D2TLS as well as DTLS.

8 CONCLUSIONS
We propose a delegation-based DTLS framework (D2TLS) for cloud-
based IoT services. D2TLS allows for a resource-limited IoT device
to set up a DTLS connection with small computational overhead;
most of the DTLS handshake processing is performed by a dele-
gated agent in D2TLS. Unlike prior schemes that make the private
key of a device shared with the agent, D2TLS solves the key es-
crow problem. We investigate the communication patterns of two
cloud-based IoT products, which demonstrates that most of the
IoT service sessions are short and intermittent. Thus, creating a
secure connection for each session will incur the substantial over-
head. To lower the burden of setting up DTLS connections, D2TLS
leverages the session resumption and introduces a security agent,

which establishes DTLS connections on behalf of the device. Nu-
merical evaluations are conducted with two kinds of IoT products
(of different hardware capabilities), which reveals that D2TLS can
achieve better performance in terms of delay and energy consump-
tion in comparison to running DTLS standalone. In particular, the
execution times of cryptographic operations in IoT devices can
vary significantly depending on their capabilities and networking
environments.

ACKNOWLEDGMENTS
This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (2017R1A6A3A11032626). Also, this
work was supported by Institute for Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No.2016-0-00160, Versatile Network System
Architecture for Multi-dimensional Diversity). The ICT at Seoul
National University provides research facilities for this study.

REFERENCES
[1] Mario Ballano Barcerna and Candid Wueest. 2015. Insecurity in

the Internet of Things. White Paper. Symantec (2015). http:
//www.symantec.com/content/en/us/enterprise/media/securityresponse/
whitepapers/insecurity-in-the-internet-of-things.pdf

[2] Carsten Bormann, Klaus Hartke, and Zach Shelby. 2014. The Constrained Appli-
cation Protocol (CoAP). RFC 7252. (June 2014). https://doi.org/10.17487/rfc7252

[3] Carsten Bormann, Simon Lemay, Hannes Tschofenig, KlausHartke, Bill Silverajan,
and Brian Raymor. 2018. CoAP (Constrained Application Protocol) over TCP,
TLS, and WebSockets. RFC 8323. (Feb. 2018). https://doi.org/10.17487/RFC8323

[4] Tim Dierks. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246. (Aug. 2008). https://doi.org/10.17487/rfc5246

[5] Thomas Fossati and Hannes Tschofenig. 2016. Transport Layer Security (TLS) /
Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things.
RFC 7925. (19 July 2016). https://doi.org/10.17487/rfc7925

[6] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Generation Computer Systems 29, 7 (2013), 1645 –
1660. https://doi.org/10.1016/j.future.2013.01.010

[7] R. Hummen, H. Shafagh, S. Raza, T. Voig, and K. Wehrle. 2014. Delegation-based
authentication and authorization for the IP-based Internet of Things. In 2014
Eleventh Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON). 284–292. https://doi.org/10.1109/SAHCN.2014.6990364

[8] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao Wan, and Jianping Wu. 2014.
When HTTPS Meets CDN: A Case of Authentication in Delegated Service. In
IEEE S&P 2014. 67–82. https://doi.org/10.1109/SP.2014.10

[9] JulienMineraud, Oleksiy Mazhelis, Xiang Su, and Sasu Tarkoma. 2016. A gap anal-
ysis of Internet-of-Things platforms. Computer Communications 89-90 (2016), 5 –
16. https://doi.org/10.1016/j.comcom.2016.03.015 Internet of Things Research
challenges and Solutions.

[10] S. R. Moosavi, T. N. Gia, E. Nigussie, A. M. Rahmani, S. Virtanen, H. Tenhunen, and
J. Isoaho. 2015. Session Resumption-Based End-to-End Security for Healthcare
Internet-of-Things. In Computer and Information Technology; Ubiquitous Comput-
ing and Communications; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Con-
ference on. 581–588. https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.83

[11] oneM2M Partners. 2014. oneM2M Security Solutions. Web page. oneM2M
Partners (1 August 2014). http://onem2m.org/images/files/deliverables/TS-0003-
SecuritySolutions-V-2014-08.pdf

[12] Eric Rescorla. 2016. The Transport Layer Security (TLS) Protocol Version 1.3.
Internet-Draft draft-ietf-tls-tls13-18. Internet Engineering Task Force. https:
//tools.ietf .org/html/draft-ietf-tls-tls13-18 Work in Progress.

[13] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. (Aug. 2018). https://doi.org/10.17487/RFC8446

[14] Eric Rescorla and Nagendra Modadugu. 2012. Datagram Transport Layer Security
Version 1.2. RFC 6347. (Jan. 2012). https://doi.org/10.17487/rfc6347

[15] Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. 2018. The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3. Internet-Draft draft-ietf-
tls-dtls13-28. Internet Engineering Task Force. https://datatracker.ietf .org/doc/
html/draft-ietf-tls-dtls13-28 Work in Progress.

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/insecurity-in-the-internet-of-things.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/insecurity-in-the-internet-of-things.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/insecurity-in-the-internet-of-things.pdf
https://doi.org/10.17487/rfc7252
https://doi.org/10.17487/RFC8323
https://doi.org/10.17487/rfc5246
https://doi.org/10.17487/rfc7925
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1109/SAHCN.2014.6990364
https://doi.org/10.1109/SP.2014.10
https://doi.org/10.1016/j.comcom.2016.03.015
https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.83
http://onem2m.org/images/files/deliverables/TS-0003-Security_Solutions-V-2014-08.pdf
http://onem2m.org/images/files/deliverables/TS-0003-Security_Solutions-V-2014-08.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-18
https://tools.ietf.org/html/draft-ietf-tls-tls13-18
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/rfc6347
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-28
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-28

IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada E. Cho et al.

[16] Joseph A. Salowey. 2008. Transport Layer Security (TLS) Session Resumption
without Server-Side State. RFC 5077. (Jan. 2008). https://doi.org/10.17487/rfc5077

[17] Zach Shelby, Michael Koster, Carsten Bormann, Peter Van der Stok, and Christian
AmsÃĳss. 2018. CoRE Resource Directory. Internet-Draft draft-ietf-core-resource-
directory-15. Internet Engineering Task Force. https://datatracker.ietf .org/doc/
html/draft-ietf-core-resource-directory-15 Work in Progress.

[18] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers. 2016. Twenty Security
Considerations for Cloud-Supported Internet of Things. IEEE Internet of Things
Journal 3, 3 (June 2016), 269–284. https://doi.org/10.1109/JIOT.2015.2460333

[19] A. Sivanathan, H. Habibi Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vish-
wanath, and V. Sivaraman. 2018. Classifying IoT Devices in Smart Environments

Using Network Traffic Characteristics. IEEE Transactions on Mobile Computing
(2018), 1–1. https://doi.org/10.1109/TMC.2018.2866249

[20] Douglas Stebila and Nick Sullivan. 2015. An analysis of tls handshake proxying.
In Trustcom/BigDataSE/ISPA, 2015 IEEE, Vol. 1. IEEE, 279–286.

[21] Hannes Tschofenig, Jari Arkko, Dave Thaler, and Danny R. McPherson. 2015.
Architectural Considerations in Smart Object Networking. RFC 7452. (March
2015). https://doi.org/10.17487/RFC7452

[22] wolfSSL. 2018. TLS 1.3 Performance Part 1 — Resumption. Web page. wolfSSL
(23 May 2018). https://www.wolfssl.com/tls-1-3-performance-resumption/

https://doi.org/10.17487/rfc5077
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-15
https://datatracker.ietf.org/doc/html/draft-ietf-core-resource-directory-15
https://doi.org/10.1109/JIOT.2015.2460333
https://doi.org/10.1109/TMC.2018.2866249
https://doi.org/10.17487/RFC7452
https://www.wolfssl.com/tls-1-3-performance-resumption/

	Abstract
	1 Introduction
	2 Background
	2.1 Delegation schemes for IoT devices based on DTLS 1.2
	2.2 Prevention of Secret Information Sharing for Delegation
	2.3 Differences in Session Resumption of TLS 1.2 and 1.3

	3 Measurement of IoT Products
	3.1 Smart Home Monitoring System
	3.2 Smart Watch

	4 Delegation-based DTLS (D2TLS)
	4.1 D2TLS Framework
	4.2 End-to-End Secure Connection by Session Resumption

	5 Security Considerations
	6 Evaluation
	6.1 Evaluation Environments
	6.2 Delay
	6.3 Energy Consumption
	6.4 Code Size and Memory Requirements
	6.5 Session Overhead Depending on Session Frequency and DTLS Context Lifetime

	7 Discussions
	7.1 IoT device as a Server
	7.2 Considering DTLS 1.3 Session Resumption
	7.3 Hardware-assisted IoT Security

	8 Conclusions
	Acknowledgments
	References

