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Abstract. Internet-of-Things (IoT) cyber threats such as jackware [14]
and cryptomining [33] show that insecure IoT devices can be exploited by
attackers with different goals. As many such attacks are multi-steps, early
detection is critical. Early detection enables early attack containment
and response, and prevention of malware propagation. However, it is
challenging to detect early-phase attacks with both high precision and
high recall as attackers typically attempt to evade the detection systems
with stealthy or zero-day attacks. To enhance the security of IoT devices,
we propose IoTEDef, a deep learning-based system able to identify
the infection events and evolve with the identified infections. IoTEDef
understands multi-step attacks based on cyber kill chains and maintains
detectors for each step. When it detects anomalies related to a later stage
of the kill chain, IoTEDef backtracks the log of events and analyzes
these events to identify infection events. Then, IoTEDef updates its
infection detector with the identified events. IoTEDef can be used for
threat hunting as well as the generation of indicators of compromise and
attacks. To show its feasibility, we implement a prototype of the system
and evaluate it against the Mirai botnet campaign [2] and the multi-step
attack that exploits the Log4j vulnerability [36] to infect the IoT devices.
Our results show that the F1-score of our evolved infection detector in
IoTEDef, instantiated with long short-term memory (LSTM) and the
attention mechanism, increases from 0.31 to 0.87. We also show that
existing attention-based NIDSes can benefit from our approach.

Keywords: internet of things, multi-step attacks, infection identification, threat
hunting, attention mechanism

1 Introduction

The Internet of Things (IoT) is the network of physical objects (or “things”),
embedding electronics, software, and network connectivity, which enable these
objects to collect and exchange data. IoT allows objects to be sensed and controlled
remotely across existing network infrastructure, creating opportunities for more
direct integration between the physical world and computer-based systems. IoT
technology thus enables many novel applications and business opportunities [1].
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However, IoT devices are at higher security risks than conventional computer
systems [4]. Such devices often have access to attackers’ targets such as sensitive
data, cyber-physical systems, and/or user credentials [9]. Coming up with security
techniques for IoT devices is challenging because these devices are often resource-
constrained and thus hardly able to defend themselves. Often they are not
appropriately hardened, nor regularly patched, and not even managed according
to security best practices, leading them to become easy targets for attackers.

Very often, attack campaigns aiming at compromising IoT devices include
multiple steps to acquire a foothold in a targeted system. For example, recent
botnet campaigns, such as Reaper [26] or Mozi [38], scan ports to find any
vulnerable entry points of the target device and attempt to take over it by
performing telnet dictionary attacks or zero-day attacks. Once such a foothold is
established, the attacker maintains persistence in the system, spreading malware
to other devices, ex-filtrating confidential data, or stealing credentials. Therefore,
detecting attacks at an early stage and identifying infection vectors are critical
in order to contain and respond to the attacks, prevent re-infection, and fully
remove the attacker’s footholds.

However, it is challenging to detect early-phase attacks with both high preci-
sion and high recall. The reason is that to acquire a foothold in a target system,
an attacker typically attempts to evade the detection systems by performing
stealthy attacks (e.g., stealthy, distributed SSH brute-forcing [22]) or exploiting
completely unknown device vulnerabilities (i.e., zero-day attacks) [26,39,40]. To
detect such attacks, the detectors may classify all the suspicious or unknown
patterns as anomalies, but it results in a high number of false positives [21].

In this paper, we propose IoTEDef, an anomaly-based network intrusion
detection system (NIDS) tailored for IoT devices, which is kill chain-based,
infection-identifying, and self-evolving. As IoTEDef is network-based, it supports
resource-constrained IoT devices without requiring additional computation or
networking by these devices. We design IoTEDef to be anomaly-based because
anomaly detection is able to detect unknown patterns [10] and is effective for
IoT networks that have simple communication patterns [18]. Building on the
concept of a cyber kill chain, which is a framework for understanding multi-step
attacks [13, 20, 43], IoTEDef uses several detectors – one for each step, and
detects abnormal traffic based on results from these detectors. IoTEDef focuses
on the steps of a kill chain where networking communication is involved and
models the attack’s structure. We refer to the steps executed by the attacker to
gain a foothold in the targeted system as early stages and the other steps as later
stages. With such knowledge, IoTEDef backward traverses the log of the events
upon detecting anomalies related to a later stage of the kill chain, and analyzes
these events to identify infection events. IoTEDef updates the system based
on the identified events to improve the performance of its infection detector.
Essentially, IoTEDef gives up precise detection of unknown patterns of an early
stage attack when IoTEDef faces an unknown attack for the first time. Instead,
after IoTEDef recognizes that there has been an early stage attack through
known patterns of the later stage attack, IoTEDef identifies the corresponding
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early stage attack patterns and makes its early detector learn the patterns. Then,
IoTEDef can detect such an early stage attack with high precision later on.

Implementing such a strategy is, however, challenging as IoTEDef needs to
correlate adversarial and separate events in two different steps (e.g., UDP flooding
in the action step and dictionary attack packets in the infection step), where
the interval between them can be long. Solving the problem requires mapping
diverse networking patterns into kill chain steps and backtracking from later
events to earlier events. We note that similar challenges also exist in the area
of language translation, and many techniques have been developed to address
these challenges [5]. Therefore, we model the problem as a language translation
problem by introducing a novel probability-based embedding to encode past events
into steps that the events belong to and a attention-based infection identification
algorithm to correlate the encoded events with long-term dependencies in different
steps. The algorithm we use helps identify infection events that lead to action
events. Finally, we use the identified infection events to improve the performance
of the infection detector.

Our systematic and automated method for early detection and self-evolution
is beneficial to organizations that perform threat hunting [42]. According to a
survey [7], many organizations value threat hunting as it is helpful for early
detection and faster repair of vulnerabilities. However, 88% of the respondents
say their current systems for threat hunting are immature in terms of formal
processes and automation. It shows the value of IoTEDef since it meets such
requirements.

To summarize, we make the following contributions:

– We propose IoTEDef, an NIDS that prevents persistent attacks in IoT
environments at an early stage.

– We design an attention mechanism-based algorithm to identify infection
events from past events.

– We implement a proof-of-concept of IoTEDef and release it on a publicly
available repository.

– We carry out comprehensive experiments to assess the accuracy of IoTEDef.
Our results show that our approach is feasible and effective.

2 Background

2.1 Cyber Kill Chains

The term ‘kill chain’ has been coined in the military domain to describe the steps
an attacker should complete one by one to achieve its malicious objectives. There
are several frameworks [13,20, 43] proposed to apply this concept to the area of
information security. These frameworks understand the structure of attacks as
many attacks are multi-steps. Although the number and the name of steps vary,
these kill chains commonly break down an attack into the following five steps:

– Reconnaissance: the attacker collects information about the target. The
attacker may perform social engineering or port scanning.
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– Infection: the attacker exploits vulnerabilities of the target to take over it
and installs malware binaries required to launch attacks. The attacker may
launch dictionary attacks or zero-day attacks for this purpose.

– Lateral movement: once the attacker has access to the target, the attacker
may move laterally to other devices to gain more leverage. The attacker may
perform scanning activities or propagate malware in the internal domain.

– Obfuscation: the attacker hides its tracks. This step may involve laying
false trails and clearing logs.

– Action: the attacker launches the attack. For example, in botnets, the
attacker directs bots to perform a DDoS attack such as UDP flooding.

We focus on the three steps – Reconnaissance, Infection, and Action – in our
NIDS to model the multi-step attacks. The reason is that NIDS can issue the
alarms for the reconnaissance and infection steps with the higher priority [32]
and can also detect networking attacks, such as DDoS, of the action step.

2.2 Attention Mechanism

The goal of the attention mechanism [3, 30] in deep learning is to pay greater
attention to certain factors when classifying data. It was introduced in the natural
language processing field to address the problem of long-term dependencies in
the sequence-to-sequence model that consists of the encoder and the decoder [44].
The encoder compresses a sentence in one language into a fixed-length vector
(called a context vector). With the vector, the decoder generates a sentence in the
other language. Both the encoder and the decoder are recurrent neural networks
(RNNs) with long short-term memory (LSTM) units, and the final hidden state
of the encoder is provided to the decoder as a context vector. However, Cho et
al. [6] have shown that the performance of the model degrades as the length of the
sentences increases, which is called the bottleneck problem. It is mainly because
information loss occurs in the context vector due to its fixed size. Specifically, it
often cannot capture interdependence between words far apart in sentences.

With the attention mechanism, the decoder not only refers to the final hidden
state of the encoder but also checks all the hidden states of the encoder. In
generating a translated sentence, the decoder outputs the next word focusing
more on certain hidden states related to the decoder’s current state. To this end,
each hidden state of the encoder is associated with a weight per state of the
decoder, called an attention weight. It is determined by the alignment score that
quantifies the amount of attention. The most widely used scoring function is a
dot product by which the score is obtained by multiplying the hidden states of
the encoder with the state of the decoder.

3 Architecture of IoTEDef

This section presents the design of IoTEDef. We first provide the threat model
and the main properties, then describe the architecture of IoTEDef.



IoTEDef 5

Fig. 1: Architecture of IoTEDef and Infection identification flow.

3.1 Design Principles

Threat model. IoTEDef analyzes network packets exchanged between the
network (where it aims to protect) and the Internet. We assume that IoTEDef
is not compromised; thus, it does not manipulate the exchanged packets. Also,
we assume that an attack is always initiated from the Internet by using remote
network access. IoT devices when initially deployed in the network are not
compromised; however, they can be compromised later on.
Main properties. IoTEDef is designed to adhere to the following properties:

– Network-based: it works with network packets; thus, it does not impose
any computation overhead on IoT devices, and is immediately deployable as
it does not require any change on IoT devices.

– Anomaly-based: it is able to detect unknown patterns and it is also appro-
priate for the simple communication behavior of IoT devices.

– Kill chain-based: it understands multi-step attacks based on a kill chain
and deploys classifiers specialized for the steps.

– Infection-identifying: it backtracks past events to identify infection events
when it detects known events of later stages.

– Self-evolving: it updates the infection detector with the identified events.

3.2 Overview

IoTEDef consists of four main components: window manager, per-step detectors,
sequence analyzer, and detector updater (see Figure 1)
Window manager (packets → window). IoTEDef works on a flow-based
window where a flow is defined as a 5-tuple – the protocol in use, source/destination
IP addresses, and source/destination ports. A window manager collects packets
per flow and runs a sliding window based on two parameters – a window output
period and a window length. On every window output period, the window manager
outputs a window in the form of a vector that consists of the 84 flow feature values
considered in CICFlowMeter [28], a network traffic flow analyzer. The flow
feature values are evaluated from packets within a window length. For instance,
let a window output period be 2 and a window length be 5. When a window is
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output at time t = 5, the window contains the flow feature values from packets
captured between t = 0 and t = 5. The next window is output at t = 7 with the
values from packets captured between t = 2 and t = 7.
Per-step detectors (window → event). The main purpose of this component
is to map a window to one or more kill chain steps. To this end, IoTEDef has
three per-step detectors - one for each of the Reconnaissance, Infection, and Action
steps, by which NIDS can detect anomalies. They are called the reconnaissance
detector, the infection detector, and the action detector, respectively. Each
detector has its classifier learned from networking patterns of the corresponding
step. Once a window is given to IoTEDef, each per-step detector takes it as input
and determines if it contains any anomalous pattern for the corresponding step.
If so, IoTEDef labels the window with the name of the corresponding step. For
example, we call a given window a reconnaissance window if the reconnaissance
detector detects anomalies from the window. This process provides a precedence
relation between windows according to the kill chain steps.

A window may belong to multiple steps. For example, the window can be
classified as Reconnaissance and Infection by the reconnaissance and the infection
detectors. We call such a window both a reconnaissance window and an infection
window. As the results of per-step detectors can be false positives, we make
our per-step detectors return confidence scores as well as the results. IoTEDef
applies the softmax function to normalize the confidence scores from per-step
detectors, resulting in a probability distribution. The probability distribution is
used to correct false positives by the infection identification algorithm. We call an
output of per-step detectors an event that contains a window, three labels (i.e.,
whether the window belongs to each step respectively), and four probabilities
(i.e., normalized confidence scores).
Sequence analyzer (sequence of events → identified infection events).
This module runs the infection identification algorithm to find the infection events
that lead to the action event. The algorithm takes a sequence of past events, each
of which has a probability distribution assigned by per-step detectors. Then, the
algorithm analyzes the sequence and determines only one kill chain step for each
event according to the entire context. To this end, we develop an identification
algorithm based on the attention mechanism in deep learning techniques, which
considers all the (hidden) states when producing the next state. Finally, the
algorithm returns the infection events from the resulting sequence.
Detector updater. (identified infection events → updated infection
detector). The detector updater is responsible for updating the classifier of the
infection detector. The module labels the identified infection events as Infection
and re-trains a new classifier with the training set and the events.

4 Detail of IoTEDef

This section provides IoTEDef in detail. We first formally define the problem
to be solved and present our solution with the probability-based embedding and
the attention-based translation. Finally, we discuss our update strategies.
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4.1 Problem Definition

We begin with the notions of a tag and an event. Our formal definitions include
notation a.b to indicate an attribute b of a.

Definition 1 (tag). A set L = {B,R, I,A} is a collection of tags that an event
can be labeled with, where B,R, I,A denote Benign, Reconnaissance, Infection,
and Action, respectively.

Definition 2 (event). An event e = (w, l, p, t) is a tuple of four attributes. e.w is
a window. e.l = (r, i, a) is a tuple of three attributes where e.l.r, e.l.i, e.l.a ∈ {0, 1}
and each indicates whether the window (e.w) is labeled by each step detector.
e.p = (b, r, i, a) is a tuple of four attributes (0 ≤ e.p.b, e.p.r, e.p.i, e.p.a ≤ 1, e.p.b+
e.p.r + e.p.i+ e.p.a = 1), which are the probabilities of the window belonging to
the class Benign, Reconnaissance, Infection, and Action, respectively. e.t ∈ L is a
tag that will be finally assigned by the identification algorithm.

In what follows, E denotes the set of events. Recall that our goal is to identify
infection events by backtracking the past events (or an input sequence of events)
based on anomalies in the action step. We model the process of backtracking as
an event tagging problem described as follows:

Problem 1 (event tagging problem). Let e = {e1, e2, · · · , en} be an input
sequence that belongs to E∗ and let y = {y1, y2, · · · , yn} be an output sequence
that belongs to L∗, where E∗ is a set of all sequences over the set of events E
and L∗ is a set of all sequences over an output space L. Our goal is to design a
function g : E∗ → L∗ that takes an input sequence e and outputs y.

While solving the problem, we face the challenge of long-term dependency
between events. As an example, an infection event always precedes an action
event, but the time interval between those two events can be long. For instance, in
Mirai [2], a device is infected by an attacker’s dictionary attack (an infection step).
Then, the device launches the UDP flooding attack (an action step), possibly a
long time after the infection event. In this example, the role of IoTEDef is to
identify events that contain dictionary attack patterns when IoTEDef detects a
UDP flooding pattern. Therefore, IoTEDef should be able to correlate distant
events.

To address such an issue, we review language translation techniques in natural
language processing as even words that appear far apart can have a significant
relationship in natural language. There have been many techniques to capture
such dependencies [5]. Our idea is that if we are able to model an event as a
word in a language and a sequence as a sentence in a language, we can achieve
the goal by using language translation techniques. To this end, we should resolve
the two challenges: 1) how to model an event as a word in the language and 2)
what technique we use to translate an input sequence to an output sequence.

Modeling an event as a word in a language requires defining the word sets of
input and output sequences. For an output word set, we can use L. However, it is
challenging to define an input word set to represent each in a sequence of events.
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One important requirement is that our encoding scheme should be able to model
long-term dependency. For example, using the one-hot encoding is inappropriate
in our scheme since it cannot capture the informative relations between different
categorical variables [16] (see Subsection 5.2).

Another challenge is what technique to use for translating an input sequence
to an output sequence. There are traditional sequence labeling or decoding
algorithms from observations, such as an episode-tree-based model [41] or the
Viterbi algorithm [11]. However, they are ineffective as they cannot model long-
term dependency (see Subsection 5.4).

Therefore, we divide Problem 1 into the following two subproblems.

Subproblem 1 (embedding). Let e = {e1, e2, · · · , en} be an input sequence
of length n that belongs to E∗ and let x = {x1, x2, · · · , xn} be an input sentence
that belongs to X ∗, where X ∗ is a set of all sentences over an input word set X .
Our goal is to define an input word set X and an embedding function e : E → X
that takes an event e as an input and outputs an input word x to finally convert
e to x.

Subproblem 2 (translation). Let x = {x1, x2, · · · , xn} be an input sentence
that belongs to X ∗ and let y = {y1, y2, · · · , yn} be an output sentence that belongs
to L∗. Our goal is to design a translation function t : X ∗ → L∗ that takes x as
an input, tags all the embedded windows in x, and outputs y = {y1, y2, · · · , yn}.

Our solution to the problem consists of the following three steps (see Figure 1):
1. Probability distribution assignment: an event is assigned a probability
distribution (e.p) that shows how much a window (e.w) belongs to a class.
2. Probability-based embedding: the probability distribution of an event is
encoded into a word in a language.
3. Attention-based translation. A series of embedded words are translated
into tagged ones each of which has only one label.

4.2 Probability Distribution Assignment

Per-step detectors are responsible for this step. Recall that the per-step detectors
detect reconnaissance, infection, and action patterns in a given window. Each
detector has its own classifier trained with packets of the corresponding step and
detects anomalies according to the classification results. For example, the classifier
of the infection detector is generated from the network patterns of the telnet
dictionary attack, the Log4j attack, or other attacks aiming to infect IoT devices.
For a classifier of each per-step detector, any algorithm can be used. However,
the performance of IoTEDef depends on the characteristics of the classification
algorithm as the infection identification algorithm runs over the detection result.
Our result shows that the class of recurrent neural networks (RNN) with long
short-term memory (LSTM) units is most effective (Subsection 5.3).

Each detector evaluates the probability of the window belonging to its corre-
sponding step. For instance, the reconnaissance detector may label the window as
Reconnaissance with a probability of 0.68 and the infection detector may classify
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Algorithm 1 Probability-based Embedding e

Input: Sequence of events s = (e1, · · · , en) and d
Output: Sequence of words (Sentence) x = (x1, · · · , xn)
Initialize: x[:] = []
1: for k = 1, 2, . . . , n do
2: sort ek.p.b, ek.p.r, ek.p.i, ek.p.a by the decimal part to be rounded off in descend-

ing order
3: if more than two decimal parts are larger than 5 then
4: Round down the last one or two probabilities to ensure sum = 1
5: Round off the rest of the probabilities
6: else if more than two decimal parts are smaller than 5 then
7: Round up the first one or two probabilities to ensure sum = 1
8: Round off the rest of the probabilities
9: else

10: Round off the probabilities
11: end if
12: ▷ r(a, b): the result of rounding up/down/off a to b of decimal places
13: xk = (r(ek.p.b, d), r(ek.p.r, d), r(ek.p.i, d), r(ek.p.a, d))
14: Add a word xk to Sequence x
15: end for

the window as Infection with a probability of 0.53. We convert the probabilities
into one probability distribution using the softmax function and finally output
the distribution as an event. As an example, an event may be associated with a
probability distribution (0.46, 0.31, 0.11, 0.12), which means that the probability
that the corresponding window belongs to Benign is 0.46, Reconnaissance is 0.31,
Infection is 0.11, and Action is 0.12.

4.3 Probability-based Embedding

To solve Subproblem 1, we design a novel probability-based embedding algorithm
(see Algorithm 1). We represent input words as a vector of four probabilities (for
each step) - the sum of which is 1.
Hyperparameter d. One issue is that the above input word set is infinite, which
would be inappropriate for a language translation model based on finite input word
sets. Thus, we change the input set to be finite. To this end, we introduce a hyper-
parameter d, which is the number of decimal places to round off the probabilities.
Given d ∈ N, let P be {p|p = round(q, d), 0 ≤ q ≤ 1}, where round(a, b) is a
function that rounds off a to b of decimal places. With d, the input set is changed
to X = {(b, r, i, a)|b, r, i, a ∈ P and b+ r+ i+a = 1}. However, rounding off does
not guarantee that the sum of the rounded probabilities is always one. To avoid
the case that the sum is not one, we first sort the probabilities by the decimal
part to be rounded off. Then, we round up the first one or two probabilities or
down the last one or two to ensure the sum of the resulting probabilities is one.
For example, (0.466 · · · , 0.412 · · · , 0.031 · · · , 0.087 · · · ) became (0.5, 0.4, 0.0, 0.1)
when d = 1 (see bolded numbers in Figure 1). Note that d determines the number
of input words in the word set.
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Algorithm 2 Attention-based Translation t

Input: Sequence si = (e1, · · · , en), Decimal Place d
Output: Sequence so
Initialize: so[:] = 0
1: se = ProbabilityBasedEmbedding(si, d)
2: rlstm = LSTM(se)
3: rattention = Attention(rlstm)
4: rff = Feedforward(rattention)
5: rsm = Softmax(rff )
6: ▷ rsm = (pb1 , pr1 , pi1 , pa1), · · · , (pbn , prn , pin , pan)
7: for k = 1, 2, . . . , n do
8: ek.t = argmax((pbk , prk , pik , pak ))
9: Add ek to sequence so

10: end for

4.4 Attention-based Translation

To solve Subproblem 2, we apply the attention mechanism to our neural network
classifier that has been introduced to address the long-term dependency problem
in language translation. The flow of infection identification with the multi-
classification neural network is as follows (see Algorithm 2):

– Input: an input sequence is a series of events, each of which has a probability
distribution assigned by the per-step detectors.

– Embedding: the events in an input sequence are converted to a sentence of
input words, each of which consists of four probabilities.

– Long short term memory (LSTM): after the embedding, a sequence
of input words passes through an LSTM layer. The layer outputs vectors
considering the context of each input word.

– Attention: we add an attention layer after the LSTM layer. It calculates
correlation scores between events and assigns attention weights.

– Feedforward & Softmax: we add a feedforward layer and a softmax layer.
They output four probabilities for each input word. Each probability repre-
sents the degree that an input word is translated into an output word.

– Output: finally, each input word in the input sequence is translated into the
output word with the highest probability.

With the attention mechanism, IoTEDef analyzes a given sequence in the
context between events. As words of the same form may have different meanings
in the context of the sentence, events with the same distribution may also belong
to different steps in the context of the sequence. For example, some events
with the same distribution may belong to Benign or Infection, depending on
whether an action event is in the sequence or not. In the attention mechanism,
the attention weights are evaluated with respect to different steps and positions
in sequences. Thus, it helps to distinguish the differences between the events that
have the same distribution but belong to different steps and identify infection
events related to an action event in the sequence.
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4.5 Self-Evolving Strategies

The detector updater updates the classifier of the infection detector with the
identified infection events. We consider three different strategies. Let A be a set
of events having the highest probability of Infection after passing through the per-
step detectors and let B be a set of infection events tagged by the attention-based
translation. We denote the difference between the two sets by C (i.e., A \ B).

– Strategy 1: a new infection classifier is generated over a training set, all the
events in B as Infection, and all the events in C as Benign. For example, let
say there are 5 events e1, e2, e3, e4, e5 ∈ A (i.e., ei.l.i = 1 for i = {1, 2, 3, 4, 5})
and the attention-based algorithm provides the information that e1, e2, e4 (B)
are infection events (i.e., e1.t = e2.t = e4.t = I). Then, IoTEDef updates
the classifier with e1.w, e2.w, e4.w labeled as Infection and e3.w, e5.w labeled
as Benign.

– Strategy 2: this strategy is similar to the first one except that it only
uses a training set and all the events in B (not the events in C). It adds
information about the true positives to the updated model. In our example,
e1.w, e2.w, e4.w labeled as Infection are used to update the model.

– Strategy 3: this strategy is similar to the first one, but it uses a training
set and all the events in C (not the events in B). It aims to reduce the false
positives of the updated model. In our example, e3.w, e5.w labeled as Benign
are used to update the model.

5 Evaluation

This section provides an experimental analysis of IoTEDef. We implement a
proof-of-concept prototype and build a testbed for evaluation using a dataset re-
lated to the Mirai botnet [2] and the Log4j attack [36]. We release the dataset, the
scripts, and the implementation source codes at https://github.com/iotedef.

5.1 Experimental Setting

Implementation. We use the pcapy library [8] to capture packets and the keras
library [24] to implement neural networks and other machine learning-related
functions. The LSTM layer consists of 100 units for our attention-based neural
network with 0.5 for the dropout rate and 0.2 for the recurrent dropout rate.
The subsequent attention layer uses a dot-product as a scoring function. Finally,
the feedforward layer consists of 64 units. We use sparse categorical cross entropy
as loss function.
Datasets. We generate datasets considering the following two scenarios.

– Mirai botnet campaign [2]: it includes the telnet dictionary attack as an
infection activity. We use a publicly available IoT intrusion dataset from
academia [23]. It contains captured packets from the real-world and consists
of diverse types of packets including benign packets, port scanning packets,

https://github.com/iotedef
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Fig. 2: Impact of the probability-based embedding.

telnet dictionary attack packets, and flooding packets, as separate files. We
extract packets from the files and combine them into one dataset. We label
port scanning packets to Reconnaissance, the telnet dictionary attack packets
to Infection, and the flooding packets to Action. We add benign telnet login
packets to degrade the performance of the infection detector.

– Log4j attack [36]: it includes the Log4j attack as an adversary’s infection
activity. We build our testbed based on Mininet [27], run multi-step attacks,
and capture the packets. The resulting dataset includes the port scanning
packets as Reconnaissance, the Log4j attack packets as Infection, and the
flooding packets as Action. The dataset also contains benign HTTP POST
packets from which the Log4Shell attack packets are difficult to tell.

We generate several datasets per scenario, each of which has a different number
of packets corresponding to the step and time intervals between different events.
The detail of the dataset generation algorithm is described in Section A.
Testbed. We perform our experiments in one machine with i7-4700 CPU @
3.60GHz 8 core processors and 16GB RAM. To evaluate the performance of
IoTEDef with the practical scenarios, we replay the packets from the above
dataset with Tcpreplay [25]. The generated packets are captured by IoTEDef.
Experiments. We measure the performance for the following three cases for a
given test set. We report averaged results of 30 trials per scenario.

– Baseline: We see how many infection events can be correctly detected with
the infection detector learned only with the training set.

– Attention: We evaluate how well our attention-based infection identification
algorithm (Attention) works over a sequence of events.

– Update: We measure the performance of the infection detector evolved with
the identified infection events on a different test set.

5.2 Impact of Probability-based Embedding

We assess the impact of our probability-based embedding on the performance of
our attention-based translation by varying the value of the hyper-parameter d
(see Figure 2). Overall, the F1-score increases from Baseline when Attention
is used. Furthermore, we see that Attention works best with d = 1. Note that
the larger the value of d is, the higher the number of elements in the set is. For
d > 1, the number of elements is higher than 105, which we believe is too large
to map to only four variables in the output word set. The worst increment is at
d = 0, where the one-hot encoding is used. The result shows that the one-hot
encoding is ineffective for Attention as it cannot capture dependency between
words. Hereafter, we fix d = 1 in the other experiments.
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Fig. 3: Compatibility with the detector classifiers.1

5.3 Impact of Classifiers of Per-step Detectors

As Attention relies on probabilities assigned by per-step detectors (see Figure 1),
we experiment to understand the impact of different types of classifiers for the per-
step detectors on the performance of Attention. As classifiers, we use Logistic
regression, Decision tree, Random forest, the Feedforward neural
network, and LSTM. We evaluate each classifier with and without Attention
and calculate the F1-score.

We find that the neural networks are compatible with Attention (see
Figure 3). The increments of the F1-score for both neural network algorithms are
0.29 (Feedforward) and 0.48 (LSTM), respectively, while for other algorithms
is less than 0.08. Notably, LSTM is the one classifier that works best with
Attention. Compared with other algorithms, LSTM is the only algorithm
that considers the context of windows, which explains the result. After breaking
down the result of the neural networks, we find that Attention contributes to
increasing precision while maintaining recall. This result shows that the attention
mechanism assigns higher weights to features that are useful to find false positive
results in the detectors.

The reason why non-neural network algorithms show worse performance is
because of their assumption. Logistic regression shows poor performance due
to its linear boundary assumption. Decision tree shows high precision with
low recall, which means it is over-fitted. Furthermore, the difference in F1-score
between Decision tree with and without Attention is only 0.01. It is because
Decision tree does not produce a probability and thus is not compatible with
our embedding scheme. Also, Decision tree has high variance and is very
sensitive to small changes in the input, which makes it highly deterministic.
It results in loss of information when encoding different steps of the attack.
Although the problem is alleviated by using Random forest, we find that
Random forest also does not perform well with Attention for similar reasons.
Therefore, we use LSTM for our classifiers of the per-step detectors hereafter.

5.4 Other Identification Algorithms

We compare Attention with other traditional algorithms for sequences. We
consider the following three different algorithms:
Highest probability. Highest probability tags a window to the step with
the highest probability assigned by the per-step detectors. If the probabilities are
identical for a window, the algorithm labels the window in the order of Benign,
1 Note that “LSTM” in the figure is a classifier in the infection detector, not an encoder

layer before the attention layer in Attention.
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Fig. 4: Comparison with other algorithms.

Fig. 5: Self-evolving strategies.

Action, Reconnaissance, and Infection. The order is based on the number of
samples in our dataset.
Viterbi. Viterbi [11] is based on a hidden Markov model and estimates a
sequence of hidden states from an observed sequence with memory-less noise.
Episode-tree. An episode-tree is a collection of window sequences. Based on
the training set, we build an episode-tree using the tree generation algorithm by
Mannila et al. [31]. Episode-tree identifies infection windows if a given window
sequence matches a branch of the episode-tree, which contains infection windows.

The result (see Figure 4) shows that the attention-based algorithm outperforms
the other algorithms. The F1-score of the attention-based algorithm is 0.85. The
performance of Episode-tree (0.46) and Viterbi (0.20) are even worse than
Highest probability (0.65). Episode-tree is a simple pattern matching
algorithm; thus, it depends on how many patterns are captured from the training
set. Therefore, Episode-tree can be easily over-fitted, which accounts for high
precision and low recall of its result. Viterbi shows the worst performance
due to its memory-less assumption that makes the algorithm unable to capture
long-term dependencies.

5.5 Self-Evolving Strategies

We carry out an experiment to assess the impact of the three strategies discussed
in Section 4. We compare the performance of the baseline with the performance
of the updated model according to the strategies. Strategy 1 is the strategy
that uses both identified infection and benign events, Strategy 2 is the strategy
that only uses identified infection events, and Strategy 3 is the strategy that
only uses benign events.

Our results (see Figure 5) show that all the updated models outperform the
baseline regardless of the strategy. Compared with other strategies, Strategy 2
works best (an F1-score of 0.87) with the highest precision (0.82). Strategy 1
has an F1-score of 0.82 and a precision of 0.77, and Strategy 3 has an F1-score
of 0.72 and a precision of 0.64. We conclude that the self-evolving strategy affects
the performance of the models. The results show that many anomalous samples
are classified as Benign under Strategy 1 and Strategy 3, resulting in worse
performance compared to Strategy 2.
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Fig. 6: Comparison with attention-based NIDSes.

5.6 Comparison with Attention-based NIDSes

Although our approach is orthogonal to the detection algorithm, we compare
Attention with existing attention-based NIDSes with respect to two aspects.
First, we see if the performance of LSTM after being evolved is comparable to
the performance of those IDSes. Second, we assess whether Attention is also
beneficial to them. In our analysis, the following two systems are considered:
Hierarchical Attention Model (HAM). HAM [29] is based on two attention
layers, namely the feature-based attention layer and the slice-based attention
layer. The former weighs the features and the latter calculates an attention score
for a time window considering a specific number of previous windows. Finally,
the NIDS predicts the next window with the neural network.
SAAE-DNN. SAAE-DNN [45] is based on a stacked autoencoder with the
attention mechanism. It consists of two autoencoders. In-between an encoder
layer and a latent layer of each autoencoder, an attention layer is inserted. The
latent nodes of the second autoencoder are connected to the four-layer neural
network, which finally outputs the classification result.

In the experiment, we use two test sets (referred to as set1 and set2) with
different networking patterns. First, we evaluate the F1-score of LSTM, HAM,
and SAAE-DNN on both set1 and set2. Then, we apply our self-evolving
Strategy 2 to update the models based on the result on set1. We refer to the
updated models as Updated LSTM, Updated HAM, and Updated SAAE-
DNN, respectively. Finally, we measure the F1-score of the updated models on
set2. We compare the results of LSTM, HAM, SAAE-DNN, and their updated
models on set2 (see Figure 6).

Our conclusions are as follows. First, Updated LSTM outperforms HAM
and SAAE-DNN. The F1-score of the original LSTM is only 0.14, which is
lower than the scores of HAM (0.19) and SAAE-DNN (0.77). However, the
F1-score of LSTM became the highest (0.92) after being evolved. It shows that
our self-evolving strategy can make the performance of the classifier comparable
to existing systems. Second, existing NIDSes can benefit from our approach. After
being evolved, the F1-scores of HAM and SAAE-DNN increases from 0.19 to
0.42 and from 0.77 to 0.86 respectively.

6 Related Work

Network intrusion detection systems for IoT. Kalis by Midi et al. [34]
is a self-adapting, knowledge-driven IDS system. It collects knowledge about the
network’s features autonomously and selects relevant detection techniques. Fu et
al. [12] designed an IDS that models the steps of a protocol with an automaton.
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Upon receiving a packet, the automaton corresponding to the packet protocol
executes a transition. If there is any deviation in the execution of a protocol, the
IDS raises the alarm. DÏoT by Nguyen et al. [37] is a federated self-learning
anomaly detection system. It builds on device-type-specific communication profiles
and raises an alarm upon detecting deviations with respect to these profiles. To
capture diverse device-type-specific communication profiles, it uses a federated
learning approach for aggregating profiles from large numbers of clients. Unlike
the above systems, the focus of IoTEDef is to identify infection events from an
attacker’s actions, which is orthogonal to the goals of those systems.
Multi-step attack detection. Gu et al. [15] present BotHunter that detects
successful malware infection by tracking communication flows between internal
assets and external entities, and applying their dialog-based correlation. Haas
and Fischer et al. [17] propose GAC, a graph-based approach for correlation.
They apply the graph-based clustering algorithm to the alarms to cluster them
based on their similarity. Then, each cluster is labeled considering the communi-
cations between attackers and victims within the cluster. Finally, the clusters are
correlated based on the labels. Sadegh et al. [35] suggest Holmes that models
the attacks with a kill chain. From audit logs, they generate a provenance graph,
find adversarial activities based on predefined rules, and map the activities to the
corresponding kill chain step. Xueyuan et al. [19] propose Unicorn that detects
the APT attacks by leveraging provenance graphs to detect anomalies with no
prior knowledge of the APT attack patterns by using the clustering approach.

Our work differs from those approaches in three aspects: (1) Goals: they
use correlation algorithms to automatically detect multi-step attacks. On the
other hand, our approach aims to automatically identify the infection vectors
and update the IDS after seeing anomalies in the action step (or other steps).
(2) Logs: although one can identify infection windows using their correlation
algorithms, such approaches mostly rely on host events (e.g., process-related
events). Applying such approaches would require extensions of IoT devices, which
we want to avoid. (3) Used techniques: the above approaches rely on graphs to
analyze the causality between events. Unlike them, IoTEDef uses the attention
mechanism with the neural network to associate the event windows.
NIDS based on the attention mechanism. We have discussed HAM [29]
and SAAE-DNN [45] in Subsection 5.6.

7 Conclusion

In this paper, we have introduced IoTEDef, a kill chain-based approach for
early detection of persistent attacks against IoT devices. To improve the accuracy
of the infection detector, IoTEDef adopts a feedback strategy that backtracks
past events to identify infection events when anomalies at the later steps of a kill
chain are detected.

We plan to enhance our approach with host information, such as system calls
and CPU/memory and resource usage, and more steps of the cyber kill chain,
such as lateral movement and obfuscation, as part of future work.
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A Dataset Generation

In our experiment, we use the dataset from [23]. It consists of several files that
capture packets related to the Mirai botnet. In detail, it includes the ARP
spoofing packets, host discovery packets, or other flooding packets. Among them,
we use the following packets in our experiment:

– Benign: these packets are normal packets exchanged between benign entities.
– Port scanning: these packets are simple SYN packets to scan open ports

at a targeted device. These packets are labeled as Reconnaissance.
– Brute force: these packets are used to perform dictionary attacks with

predefined credentials to infiltrate into a target device. We label these packets
as Infection.

– Flooding: these packets are SYN/ACK/HTTP/UDP flooding packets to
cause a DoS condition to a victim. These packets are tagged as Action.

Due to the limited number of datasets, we manipulate the existing dataset
to create new diverse scenarios. For example, we want to generate a dataset
with a specified number of infection packets at a certain time and a number of
UDP flooding packets for a particular time. To this end, we implement a data
manipulation script, which works as follows:
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1. A new scenario file is created. The starting time of the scenario is 0.
2. A list of files that contain interesting packets is specified with the starting

time and the duration. In detail, the list consists of a number of pairs (<file
name> <starting time> <duration>), which means that the packets are
randomly extracted from <file name> and inserted into the new scenario file
at time <starting time> for <duration>. For example, bruteforce.pcap
10 2 means that the packets from bruteforce.pcap are inserted into the
new scenario at time 10 for 2 seconds.

3. All the packets are extracted from the files in the list and put into the new
scenario file appropriately. We allow overlaps between different packets.

4. Finally, the IP addresses of the packets are modified to the loopback addresses.

This way, we can flexibly generate a new dataset. The dataset generation
script is available at https://github.com/iotedef.

https://github.com/iotedef
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