
maTLS: How to Make TLS middlebox-aware?

Hyunwoo Lee†, Zach Smith§, Junghwan Lim†, Gyeongjae Choi†,
Selin Chun†, Taejoong Chung‡, Ted “Taekyoung” Kwon†

†Seoul National University, §University of Luxembourg, ‡Rochester Institute of Technology
†{bir1218,twoexponents,ryanking13,littlechun4,tkkwon}@snu.ac.kr, §zach.smith@uni.lu, ‡tjc@cs.rit.edu

Abstract—Middleboxes are widely deployed in order to en-
hance security and performance in networking. As communi-
cation over TLS becomes increasingly common, however, the
end-to-end channel model of TLS undermines the efficacy of
middleboxes. Existing solutions, such as ‘SplitTLS’, which in-
tercepts TLS sessions, often introduce significant security risks
by installing a custom root certificate or sharing a private
key. Many studies have confirmed security vulnerabilities when
combining TLS with middleboxes, which include certificate
validation failures, use of obsolete ciphersuites, and unwanted
content modification. To address the above issues, we introduce
a middlebox-aware TLS protocol, dubbed maTLS, which allows
middleboxes to participate in the TLS session in a visible and
auditable fashion. Every participating middlebox now splits a
session into two segments with their own security parameters
in collaboration with the two endpoints. The maTLS protocol is
designed to authenticate the middleboxes to verify the security
parameters of segments, and to audit the middleboxes’ write
operations. Thus, security of the session is ensured. We prove
the security model of maTLS by using Tamarin, a state-of-the-
art security verification tool. We also carry out testbed-based
experiments to show that maTLS achieves the above security
goals with marginal overhead.

I. INTRODUCTION

Middleboxes have been widely used for various in-network
functionalities and have become indispensable. They are usu-
ally deployed by network operators, administrators, or users
for various benefits in terms of performance (e.g., proxies,
DNS interception boxes, transcoders), security enhancement
(e.g., firewalls, anti-virus software), or content filtering (e.g.,
parental controls). Such deployments have become easier and
more flexible with the advent of cloud computing repre-
sented by ‘everything-as-a-service,’ including outsourced mid-
dleboxes as a service in the cloud [40].

However, the practice of using middleboxes is not compat-
ible with Transport Layer Security (TLS) [9], [12] — the de-
facto standard for securing end-to-end connections. Since TLS
is initially designed to provide end-to-end authentication and
confidential communication, middleboxes are not supposed to
read or modify any TLS traffic. Meanwhile, as HTTPS (HTTP
over TLS) [37] becomes increasingly common (more than 50%
of total HTTP traffic is now encrypted by TLS [14], [28]),
middleboxes are at risk of becoming useless unless a solution

is found. To address this issue, several approaches have been
made to retain the function of middleboxes over HTTPS.

A well-known method is SplitTLS [19], in which a TLS
session between two endpoints is split into two separate seg-
ments1 so that a middlebox can decrypt, encrypt, and forward
the traffic as a man-in-the-middle. While SplitTLS allows us to
use middleboxes with TLS, it poses security and privacy risks
on both the client and server sides. On the one hand, users are
often required to install custom root certificates, which allows a
middlebox to impersonate any server in order to read and mod-
ify all the HTTPS traffic. On the other hand, HTTPS websites
often share their private keys with some middlebox service
providers (e.g., content delivery networks (CDNs)), so that
middleboxes can provide their content to clients with better
performance. These imply that a compromised middlebox may
be used to perform critical attacks, either by abusing custom
root certificates to impersonate someone else or by using a
shared private key to impersonate a particular server.

Such vulnerabilities of middleboxes have been reported in
several studies [8], [11], [46], [34], [44]; for instance, some
middleboxes accept nearly all certificates in spite of certificate
validation failures, which gives a chance for another compro-
mised/malicious middlebox to meddle in the TLS session [8],
[11], [46]. Similarly, a middlebox that splits a TLS session
may support only weak ciphersuites, which are vulnerable to
known attacks such as the Logjam attack [1] or the FREAK
attack [3]. Even worse, it has been reported that middleboxes
are being used to inject malicious code [44], [34], [5]; for
example, Giorgos et al. [44] found that 5.15% of proxies
inject malicious or unwanted content into web pages.

Nevertheless, as middleboxes provide crucial benefits to
users, content providers, and network operators, there has
been a long thread of studies aiming to accommodate for
middleboxes in secure networking between two endpoints [41],
[20], [35], [16], [22], [31], [30]. These studies can be largely
classified into three main categories: encryption-based, trusted
execution environment (TEE)-based, and TLS extension-based.
First, BlindBox [41] and Embark [20] proposed to use special
encryption schemes such as order-preserving encryption to al-
low middleboxes to perform their functionality over encrypted
packets. Second, SafeBricks [35] and SGX-Box [16] leveraged
TEEs such as Intel SGX to make middleboxes trustworthy.
Third, several studies sought to extend the TLS protocol [30],
[22], [31], [23], [29] in order to let middleboxes intervene

1In this paper, an end-to-end channel between a client and a server is called
a TLS (or maTLS) session, while a channel between two points at which TLS
messages are encrypted and decrypted with the same key, respectively, is called
a TLS (or maTLS) segment.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23547
www.ndss-symposium.org

during the TLS handshake and perform their functionalities
within the session.

However, these approaches pose several technical chal-
lenges and limitations. The encryption-based approaches de-
pend greatly on their encryption mechanisms; as a result,
their functionalities are limited to pattern-matching or range-
filtering. The proposals leveraging TEEs are only applicable
to the middleboxes with specific hardware that provides se-
cure enclaves. What is worse, neither of them are backward-
compatible (i.e., current middleboxes have to be replaced to
adopt such approaches). The TLS extension approaches are
most feasible in the sense that TLS software can be extended
to support the backward compatibility. However, these ap-
proaches leave three issues that have not been comprehensively
solved.

First, the proposal of using explicit proxies in IETF [22]
introduces a proxy certificate to indicate that the certificate
holder is a middlebox. However, the client can only authen-
ticate the next middlebox, not the server or other middle-
boxes intervening in the session. Thus, there is still a risk
of an unknown middlebox meddling in the session. Second,
mcTLS [30], TLMSP2, and TLS Keyshare extension3 [31]
use the same symmetric key (and hence the same ciphersuite)
across all the split TLS segments between the two endpoints.
As a result, middleboxes that do not support the specific
ciphersuite chosen will not be able to process the TLS traf-
fic. Furthermore, the middleboxes share the same keystream,
which may undermine confidentiality [23]. Third, none of these
proposals except TLMSP allow the client to know who has sent
TLS traffic as well as who has modified it. In mcTLS [30],
for example, the client cannot check who is responsible for
the original message (e.g., a cache or an endpoint) if there is
a middlebox that have modified the message during transit.

In this paper, we propose an extension to TLS, which en-
sures middleboxes are visible and auditable. The starting point
is to enable a client to authenticate all the middleboxes. We first
define middlebox certificates, which are signed by certificate
authorities (CAs), and used to encrypt the channel for each
TLS segment (e.g., between a client and a middlebox, between
middleboxes, and between a middlebox and a server). The use
of middlebox certificates eliminates the insecure practice of
users installing custom root certificates or servers sharing their
private keys with third parties (like CDNs). We also intro-
duce them with middlebox transparency log servers to make
middleboxes auditable. Along with auditable middleboxes, we
design the middlebox-aware TLS (maTLS) protocol, a TLS
extension auditing the security behaviors of middleboxes. The
maTLS protocol is designed to satisfy the following security
goals (to be detailed later): server authentication, middlebox
authentication, segment secrecy, individual secrecy, data source
authentication, modification accountability, and path integrity.

To satisfy these goals, a client authenticates all participants

2Transport Layer Middlebox Security Protocol (https://portal.etsi.org/
webapp/WorkProgram/Report WorkItem.asp?WKI ID=52930). The protocol
is being discussed in ETSI, and the draft of the protocol specification is
currently unavailable. We refer to the document in the web archive:
https://docplayer.net/88122390-Announcement-of-middlebox-security-
protocol-msp-draft-parts.html

3Note that this is different from the keyshare extension used to negotiate
a Diffie-Hellman shared key in TLS 1.3.

of its maTLS session. That is, the client verifies the certificates
of all the participating middleboxes to prevent any arbitrary
middleboxes from intervening in the session, which we will
refer to as explicit authentication. Moreover, the two endpoints
confirm the negotiated security association of every segment
to ensure its confidentiality and integrity, which is called
security parameter verification. Note that a security association
consists of a TLS version, a ciphersuite, and a confirmation of
encryption key establishment. Lastly, maTLS performs valid
modification checks, which allows the endpoints of an maTLS
session to verify whether the received messages have been
modified only by authorized middleboxes. This way, maTLS
provides auditability of all participants in the session.

We also evaluate the security and performance of maTLS.
We formally prove the security of maTLS with Tamarin [24], a
state-of-the-art symbolic verification tool. We also implement
maTLS by leveraging OpenSSL to compare its performance
against prior proposals.

The remainder of the paper is organized as follows. First,
we present the background of middleboxes and detail the
problems with SplitTLS, while clarifying the security-related
definitions and concepts (§II). Next, we explain our trust and
threat model (§III). Then, we describe how to make middle-
boxes auditable (§IV), and design the maTLS protocol (§V).
We verify our security model (§VI), evaluate the performance
overhead of maTLS (§VII), and discuss further issues (§VIII).
Finally, we summarize the related work (§IX) and present our
concluding remarks (§X).

II. BACKGROUND

A. Transport Layer Security

The TLS protocol [9], [12], coupled with a Public Key
Infrastructure (PKI), is designed to authenticate endpoints,
establishing a secure communication channel between them.
The security goals of TLS are authentication, confidentiality,
and integrity: authentication is confirmation of the identity of
the other party, by validating a certificate chain and verifying
a proof-of-possession of the corresponding private key. In
practice, the server is always authenticated from its certificate,
while authenticating the client is optional. Confidentiality is a
guarantee that the data sent over the channel is secret to all
but the endpoints. Integrity ensures that any third parties do
not modify data on the network.

These security goals are achieved by two components
of the TLS protocol suite, called the handshake and record
protocols. The main purpose of the TLS handshake protocol
is to establish a master secret, which will be used for an
authenticated encryption and decryption of the data between
two endpoints.

B. X.509 Certificates

A digital certificate is an attestation that binds a subject
(e.g., a domain name) to its public key. This binding is
guaranteed by a Certificate Authority (CA) with its signature
in the certificate. The CA also possesses its certificate issued
by another CA. This results in a chain of certificates termi-
nated with a self-signed certificate called a root certificate. A
certificate receiver validates the certificate if the receiver trusts

2

the root certificate in the chain and all the signatures in the
certificates can be verified using the public key of the next
certificate in the chain (up to the root certificate).

CAs also indicate that a domain owner satisfies specific
suggested requirements. For example, a domain validation
(DV) certificate is issued when a domain owner has success-
fully proved its ownership of the domain. To provide stronger
assurance to clients that a certificate has been adequately
issued, CAs can require domain owners to follow a set of
stricter criteria in order to obtain extended validation (EV)
certificates.

On the Internet, X.509 [18] is the most widely used format
for certificates, which typically include fields such as the
subject, its public key, a serial number, and the certificate’s
validity period. The current version of X.509, version 3,
supports extensions that CAs can add for a variety of purposes;
for example, the Server Alternative Name (SAN) field [7] is
used to allow alternative names of the certificate holder.

C. Certificate Transparency

The PKI trust model has a severe drawback in reality: any
CA can issue a certificate for any domain, potentially exposing
users to high risk. There have been security incidents in which
commercial CAs were compromised and issued fraudulent cer-
tificates, allowing attackers to impersonate the actual certificate
owner or perform man-in-the-middle attacks [6], [47].

To mitigate the risks from CA compromises, Google intro-
duced the Certificate Transparency (CT) system [21], which
aims to provide accountability to a PKI. This is achieved by
archiving every certificate into multiple append-only public
log servers so that any entity can monitor and audit a CAs’
operations. Upon submission of a certificate chain, the log
servers return a signed proof called a signed certificate times-
tamp (SCT), which can be verified using the public keys of
the log servers. An SCT can be delivered from web servers
to the browsers separately or embedded in the web server’s
certificate, via a TLS extension or through OCSP. For example,
a browser might display a lower security indicator if the
server’s certificate is not logged on the CT servers. CT logging
became mandatory in Chrome for all certificates issued after
April 2018 [33]. A third party (e.g., a CA) can keep track of
CT log servers to see if there is any mis-issuance of certificates,
thus providing auditability of certificates and accountability of
CAs’ certificate issuance. For example, TLSMate’s CertSpot-
ter [42] and Facebook’s CT Monitor [13] monitor each log
server and alert a domain owner if a new certificate that binds
to her domain name has been issued.

D. Middleboxes in SplitTLS

In this paper, we consider middleboxes which inspect ap-
plication data sent over HTTPS, for the purpose of security or
performance. Figure 1 illustrates how they typically intervene
in a TLS session. A middlebox intercepts the TLS session,
splitting it into two segments. The middlebox then pretends to
be the client while communicating with the server and in turn
impersonates the server in its communication with the client.
In the case of multiple middleboxes, they form a chain of TLS
segments between the client and server, with each middlebox

Client ServerMB MB…

Custom Root Certificate Private Key / Certificate

Client-side

Middlebox

Server-side

Middlebox

Segment

Session

Segment

Fig. 1: Overview of SplitTLS: A client sets up a TLS session
with a server involving multiple middleboxes in-between.
During a TLS handshake, each middlebox splits the TLS
session into two TLS segments while pretending to be the
client’s intended server. To this end, client-side middleboxes
install custom root certificates on clients’ devices and fabricate
the server’s certificate signed by the custom root certificates.
On the other hand, server-side middleboxes take private keys
from the server in order to impersonate the server in SplitTLS.

ultimately playing both the roles of client and server during
each round trip.

Once the end-to-end session is established, the client
and the server communicate via the middleboxes. When a
middlebox receives an encrypted message over a segment, it
decrypts the message using the key of the segment. Then,
the middlebox performs its functionality on the decrypted
message. Finally, the middlebox encrypts the message with the
key for the next segment and forwards it to the next middlebox
(or the endpoint). Note that we are interested only in those
middleboxes that participate in two segments simultaneously;
for instance, we do not consider middleboxes that play the
role of the intended servers to service the content such as edge
servers in CDNs, since they do not always participate in two
segments.

Depending on which entity installs the middleboxes and
where they are deployed, we can classify middleboxes into
two categories: client-side and server-side. Client-side mid-
dleboxes are employed by users (e.g., anti-virus software)
or operators of client-side networks (e.g., intrusion detection
systems). They are located at vantage points which packets
always pass through. For example, a secure gateway, such as
Bluecoat system4, can be situated at the edge of a corporate
network to inspect all the incoming and outgoing packets.
Server-side middleboxes are deployed by web servers or
by the contracts between the web servers and middlebox
service providers. They are deployed on a server’s networks,
or in clouds that provide middlebox-as-a-service [40]. A client
typically accesses server-side middleboxes through DNS rout-
ing. For example, when a server employs an outsourced web
application firewall, such as Cloudbric5, he changes the DNS
zone file in his authoritative name server to direct traffic from
clients to the firewall. After the firewall’s inspection, the traffic
is then forwarded to web servers or to further middleboxes
based on the IP address configuration in the firewall settings.

Also, different techniques are used to intercept TLS ses-

4https://www.symantec.com/products/proxy-sg-and-advanced-secure-gateway
5https://www.cloudbric.com/

3

sions, depending on the middlebox type. For a client-side
middlebox, clients are often required to install custom root cer-
tificates into the trusted root certificate store on their devices.
Whenever a middlebox receives a TCP SYN packet sent to
the server from the client, it intercepts the packet, executing
a TCP handshake and then performing a TLS handshake with
the client. During the TLS handshake, the middlebox generates
a new certificate on-the-fly with the same common name
as the intended server, which is signed by the private key
that corresponds to the custom root certificate. Thus, if an
attacker learns any private key of a custom root certificate,
he can impersonate any server to which the client that trusts
the custom root certificate wishes to connect. Furthermore, as
the certificate is not issued by CAs, clients cannot verify its
legitimacy by other means, such as through CT or DANE [38].
For server-side middleboxes, web servers are required to
hand over their private keys along with the certificates so
that the middleboxes can service their content. This breaks
the fundamental principle of authentication and weakens the
security of the servers, which makes middleboxes attractive
targets for attackers [23], [4].

E. Security Problems in SplitTLS

Although SplitTLS complies with the current TLS practice,
several studies have reported that some middleboxes fail to
correctly validate certificates, degrade to weaker ciphersuites,
or insert malicious scripts [8], [11], [44], [5]. This means
that fundamental security properties (i.e., authentication, con-
fidentiality, and integrity) between two endpoints are broken.
The client is forced to trust the behavior of middleboxes,
since the security of the session is highly dependent on
whether the middleboxes correctly operate the TLS protocol.
We summarize how SplitTLS breaks the security goals of TLS.

Authentication: A client cannot authenticate the intended
server, as the middlebox replaces the server’s certificate with a
certificate forged by the middlebox. Even worse, recent studies
showed that some middleboxes do not validate the certificate
of the intended server. For example, PrivDog [2] was known
to accept every certificate without checking its validity, and
some anti-virus software always generates valid certificates
even when it received invalid certificates from the intended
servers (or another middlebox) [8], [5].

Confidentiality: Because a middlebox splits the original
session into two segments, the client negotiates the key for the
segment with the middlebox, not the intended server. Thus the
middlebox can read or modify all traffic between the client and
the server. Further, the client has no idea of whether the data
has been encrypted (with a strong ciphersuite) after it passes
through the middlebox. For example, when a client sends an
HTTPS request to a server by using Nokia’s Xpress Browser,
it forcibly sends all messages to the Nokia’s forward proxy.
Then, this proxy delivers the messages on behalf of the client
to the server. However, the Xpress Browser does not notify the
clients that their information can be read or modified by the
proxy [25], [15].

Integrity: SplitTLS cannot guarantee the integrity as a
client cannot detect any modification by a middlebox on her
messages with the intended server. For example, Lenovo lap-
tops performed a man-in-the-middle attack to inject sponsored

links on web pages (delivered over TLS) using Superfish [39],
but this injection behavior was not noticeable by the ordinary
client.

The above problems take place mainly because it is difficult
for a client to detect which middleboxes meddle in the session
and what they do to the traffic. Therefore, we propose that
making middleboxes visible to clients and publicly auditable
will help to address the above security and privacy challenges.

III. TRUST AND THREAT MODELS

Entities. Before introducing our threat model, we describe
five entities in the networking architecture.

(1) Client (C): A client refers to a machine or a piece
of software (e.g., web browsers), used by a user, that com-
municates with middleboxes. We assume the client correctly
performs protocols and is not compromised.

(2) Server (S): A server refers to a machine or a piece
of software, operated by a content provider, that services
content based on a client’s request. We assume that the
server to which a client wishes to connect is not malicious
or compromised. The client and the server are collectively
referred to as endpoints.

(3) Middlebox (MB): a middlebox is a machine or a
piece of software, made by a middlebox service provider.
A middlebox is deployed by a network operator, a content
provider, or a user and is located between the client and the
server. The endpoints may not be aware of the middleboxes,
their functions, or their states. If the middleboxes are mis-
configured or incorrectly implemented, they may accept invalid
certificates, use deprecated ciphersuites, or attempt to inject
unwanted or malicious content [44], [34].

(4) Certificate Authority (CA): An organization that issues
and revokes certificates. A CA issues a certificate to a re-
quester after a validation process. In our model, A CA can
be compromised; thus, fraudulent certificates can be issued to
an adversary who can impersonate the server.

(5) Middlebox transparency (MT): A system (similar to
CT [21]) that logs certificates, which can be publicly mon-
itored and audited by any interested parties. Any trusted
CT operator, such as Google, can operate an MT system.
The only difference from CT is that the MT system targets
middlebox certificates, which will be detailed in Section (§IV).
Alternatively, the CT system can be assumed to accommodate
middlebox certificates as well.

Adversary capabilities. We accept the Dolev-Yao model
[10] in which an active adversary can fully control the network;
that is, the network is untrusted. The adversary can not only
capture messages on-the-fly, but also modify, drop, reorder, or
inject messages. Specifically, he can manipulate middleboxes
(e.g., TLS-intercepting WiFi access points), which then can
capture packets, perform crypt-analysis, or patch software to
inject malicious scripts. We do not consider other attacks such
as side-channel attacks or denial-of-service attacks. .

IV. AUDITABLE MIDDLEBOXES

In this section, we describe an architecture to make middle-
boxes visible to the endpoints of TLS sessions. To this end, we

4

define the notion of an auditable middlebox that has its own
middlebox certificate logged in middlebox transparency (MT)
servers. Middlebox certificates are written based on the X.509
format, and then signed by CAs, which may require middlebox
service providers to follow a set of established criteria for
certificate issuance. Like TLS certificates, middlebox certifi-
cates could also be mis-issued, mis-configured, or exploited.
To mitigate those attacks, we also introduce MT log servers
where any middlebox certificates can be publicly logged so that
interested parties can monitor and detect unexpected behaviors.

A. Middlebox Certificates

The primary purpose of middlebox certificates is to help
users authenticate middleboxes by providing the information
about behaviors of the middlebox; for example, the role of the
middleboxes (e.g., firewall) or permissions (e.g., read or write)
can be included. This information can be added into the format
of X.509 certificate without any modification to the existing
infrastructure. Below, we itemize the required information for
a middlebox certificate along with the names of the fields.

• Name(s) of the Middlebox Service Provider indi-
cates the name(s) of the middlebox service provider,
which can be specified at the Common Name field.

• Subject (Middlebox) Public Key Info carries the
public key and the cryptographic algorithm (e.g.,
ECC) used to generate the key, which can be specified
at the Subject Public Key Info field.

• Middlebox Information Access contains additional
information that can help a user trust the mid-
dlebox. To this end, we define an extension,
Middlebox_InfoAccess where its ASN.1 syntax
is defined as follows.

Middlebox_InfoAccess :: =
SEQUENCE SIZE (1..MAX) OF Middlebox_Description

Middlebox_Description::= SEQUENCE {
Middlebox_InfoType OBJECT IDENTIFIER,
Middlebox_Info GeneralName}

For example, permission can be one of the
Middlebox_InfoType fields, used to indicate
the read or write permission required by the mid-
dlebox for TLS traffic. Similarly, the TypeofSer-
vice and URL fields can provide additional in-
formation about the middlebox as a form of
Middlebox_Description.

B. Middlebox Transparency

We introduce an MT log server that publicly records
middlebox certificates. The operation of MT is similar to that
of CT [21]. It encourages middlebox service providers or CAs
to submit middlebox certificates to the MT log server. Further,
once a middlebox certificate is accepted at the MT log server,
the log server returns a Signed Certificate Timestamp (SCT).
A client can check its membership by verifying the SCT with
the public key of the log server.

C. Properties of Auditable Middleboxes

We call a middlebox that has a middlebox certificate logged
in an MT log server an auditable middlebox. It provides the fol-
lowing benefits regarding the trustworthiness of middleboxes:

First, middleboxes now have their own key pairs and
can be authenticated from the endpoints by presenting their
valid certificate. Thus, middleboxes now no longer require (1)
content providers to share their private keys or (2) users to
install their custom root certificate.

Second, clients can be assured of the names and properties
of middleboxes or middlebox service providers. This will
hold middlebox service providers accountable.Further, with
the help of maTLS, which will be detailed in §V, clients can
detect if a middlebox has modified traffic without any autho-
rization. This can be done by checking the Permission item
in the Middlebox_InfoAccess field of the middlebox
certificate, which would encourage middleboxes to have least
privileges. For example, anti-virus software can be issued with
a middlebox certificate with only read permission to assure
users that it will not modify any traffic.

Third, middlebox certificates may require some of the
essential X.509 extensions such as Permission field to be set to
critical [18], which explicitly indicates that clients must
refuse the connection if they cannot interpret the extension.

Fourth, the MT system provides a global set of auditable
middleboxes; any interested parties, such as monitors, auditors,
and clients, can check any mis-issued, mis-configured, or
fraudulent certificates.

Fifth, when a middlebox certificate’s corresponding private
key is no longer safe due to security breaches, the middlebox
certificate can be revoked, and the revocation status can be
disseminated through existing revocation mechanisms such as
CRL [7] or OCSP [26]. Thus, clients can be protected from
middleboxes with security risks by leveraging the existing
revocation mechanisms.

Given that the PKI has been suffered from many security is-
sues regarding certificate management, one might be concerned
that introducing additional infrastructure (i.e., MT system)
could exacerbate the current situation. However, we believe
that the middlebox certificate by itself does not introduce
new management problems as it can be easily integrated into
the existing CT architecture. Rather, the use of middlebox
certificates can mitigate the current insecure practices of mid-
dleboxes splitting TLS connections such as installing custom
root certificates or sharing private keys.

V. MIDDLEBOX-AWARE TLS (MATLS)

In this section, we describe the maTLS protocol, which
is designed to allow middleboxes to participate in a TLS
session. As we have middleboxes equipped with certificates,
we extend the security goals of TLS to the seven objectives
below, divided into three categories. For the sake of exposition,
we explain maTLS based on TLS 1.2 with ephemeral Diffie-
Hellman (DHE) key exchange in the server-only authentication
mode.

5

A. Security Goals

Authentication: Similar to the authentication process
of TLS certificates, clients should be able to receive and
check the validity of the certificate of the server that the
clients intended to connect. This should hold even when there
are middleboxes splitting the TLS connection between them.
Thus, we extend the notion of the authentication to cover
both the intended server and middleboxes, and we call this
property of the maTLS protocol (1) Server Authentication.
Clients should also be able to authenticate the middleboxes
by verifying the middlebox certificates, which we call (2)
Middlebox Authentication.

Confidentiality: Browsers warn a user if her session is
negotiated with a low TLS version or a weak ciphersuite. Thus,
each maTLS segment should be encrypted with a sufficiently
high version of TLS and a strong ciphersuite; we apply this
requirement to each maTLS segments, which is called (3)
Segment Secrecy. Further, each maTLS segment should have its
own security association (e.g., a unique session key) to prevent
the same keystream from being reused across the overall
maTLS session. This goal is called (4) Individual Secrecy.

Integrity: The notion of integrity can be extended such
that only authorized entities can generate or modify messages
depending on their permissions. To this end, we define (5) Data
Source Authentication, which means that a client should be
able to confirm that a received message has originated from a
valid endpoint such as a web server or cache proxy. Moreover,
a client should be able to figure out which middleboxes have
made each modification to the message, ensuring accountabil-
ity. We call this (6) Modification Accountability. Moreover, not
only the integrity of the messages should be preserved, but
also the order of the middleboxes; the network attacker could
also capture and redirect packets, or bypass some middleboxes.
Therefore an endpoint should be able to confirm that all
messages passed through the authorized middleboxes in the
established order. We call this property (7) Path Integrity.

B. maTLS Design Overview

Session Establishment Approaches: First of all, we
explain how a client establishes an maTLS session with the
server through multiple middleboxes. There are two possible
approaches to establish an maTLS session and its segments,
as shown in Figure 2. In the top-down approach, the client
first establishes a TLS session directly with the server, and
the server determines the security parameters of the session.
After that, either or both of the endpoints should pass the
segment keys to the authorized middleboxes via separate
TLS connections. In the bottom-up approach, the client and
middleboxes first initiate TLS segments sequentially up to the
server. In this approach, the two participants of each segment
negotiate their security parameters individually, and the session
is eventually constructed from these segments.

In maTLS, we adopt the bottom-up approach for the
following reasons. First, an maTLS session can be partially
established even if not all entities support maTLS. For ex-
ample, even if the server does not support maTLS, the client
and the next middlebox that supports maTLS can still nego-
tiate security parameters for their segment and establish an
maTLS session. Second, each different maTLS segment can

(a) Top-down approach: The initial negotiation is performed
between two endpoints. Then the key materials are exchanged
with middleboxes.

(b) Bottom-up approach: The two participants of each maTLS
segment negotiate security parameters independently, and then the
maTLS session is established by connecting the maTLS segments.

Fig. 2: Two approaches to establish a TLS session with mid-
dleboxes. We adopt the bottom-up approach since it efficiently
supports incremental deployment.

benefit from using strong ciphersuites or newer TLS version
independently because maTLS does not require all entities
to share the same ciphersuite or TLS version. Third, the
bottom-up approach efficiently achieves Individual Secrecy.
This is because the two entities involved in each segment use
different random numbers to establish a master secret; thus, the
probability that all the segment keys are identical is negligible.

It is worth noting that most of the top-down approach
schemes, such as mcTLS [30], TLMSP, and TLS Keyshare
extension [31], do not support incremental deployment. This
is mainly because only the server picks the version, ciphersuite,
and extensions that are supported across all entities (i.e., both
endpoints as well as middleboxes), which makes it challenging
to deploy them incrementally. Even worse, it is highly likely
that the security level of the session will be decided by
the “intersection” of the security parameters supported by
all the entities. Furthermore, the entire session needs to use
the same shared secret, which undermines the security of the
communication as well.

Among the top-down approach schemes, the only solution
that supports incremental deployment is mbTLS [29]. If the
server does not support mbTLS, the client first establishes a
standard TLS session with the server. Then, the client sends the
segment keys to each middlebox that does support mbTLS. To
achieve individual secrecy, the client generates the different
segment keys for all the segments and distributes keys to
the corresponding middleboxes (two segment keys per one
middlebox), which is inefficient.

Audit Mechanisms: We propose three audit mechanisms
for the clients to audit middleboxes while performing an
maTLS session: Explicit Authentication, Security Parameter
Verification, and Valid Modification Checks. These mecha-
nisms necessitate some data structures for middleboxes, such
as signatures or message authentication codes (MACs), to
demonstrate accountability for every message. We prefer to

6

Audit Mechanism Proof Data Structure Description & Advantages

Explicit Authentication

A sequence of certificate blocks,
including the server certificate and
any middlebox certificates with their
signed certificate timestamps.

The client authenticates the server and middleboxes by check-
ing their certificates, and confirms their names and the middle-
boxes’ permissions
• No custom root certificate and no private key sharing
• EV certificates are not degraded due to fabricated certificates
• Support for Certificate Transparency [21] and DANE [38]

Security Parameter Verification

Security parameters of every maTLS
segment including a negotiated TLS
version, an agreed ciphersuite, and a
transcript of the handshake

The client confirms the confidentiality of every segment
• Neither a low TLS version nor a weak ciphersuite is permitted
without the client’s knowledge
• The two points of each segment perform a TLS handshake
and establish a segment key

Valid Modification Checks A modification log that keeps track
of the modifications of a packet

The client confirms that only authorized entities can generate
or modify messages
• Only an authorized data origin (a server or a cache proxy)
can generate messages
• Only trusted writer middleboxes can modify messages
• The order of middleboxes is always preserved

TABLE I: Three audit mechanisms of endpoints in maTLS: Explicit authentication guarantees the authentication of all the
participants. Security parameter verification ensures the confidentiality of all the maTLS segments. Valid modification checks
ensure that only authorized entities can modify messages.

use MACs, as signatures require higher computation overhead
on their generation. Thus, entities will use hash-based message
authentication codes (HMACs) when signatures are not neces-
sary. To this end, we introduce accountability keys that are to
be used as HMAC keys. The accountability key is established
between the endpoints and middleboxes; thus, each middlebox
should establish one accountability key with each endpoint
(two in total), while the client and the server each need one
accountability key for each middlebox, and share one more
key between them.

We overview the audit mechanisms in Table I, alongside
their notation in Table II.

(1) Explicit Authentication guarantees authentication of
the server as well as the middleboxes by validating received
certificates. If there are any suspicious middleboxes, the
maTLS session can be aborted. The server sends its certificate
in the ServerCertificate message during the maTLS
handshake. Whenever the middleboxes receive this message,
each of them simply appends its certificate, so that the client
can receive all the certificates up to the server. As the client
receives all the certificates, she does not need to worry about
the degradation of certificate-level due to forged certificates by
middleboxes. Similarly, DANE or CT can also be supported
with middleboxes.

When receiving a sequence of certificates, the client should
validate all of the certificates as well as recording the order of
the certificates, up to the server.

(2) Security Parameter Verification allows the client to
audit the security association of each maTLS segment, and
to confirm the accountability keys as well as their order.
To this end, the middleboxes have to present the security
parameters (of each segment), that is, the chosen TLS ver-
sion, the negotiated ciphersuite, the hashed master secret,
and a (hashed) transcript of the TLS handshake (i.e., the
verify_data in the Finished message). The selected
TLS version and ciphersuite show the degree of confidentiality
of the corresponding maTLS segment. The hashed master

secret demonstrates the uniqueness of segment keys. The
transcript, a digest of handshake messages in the maTLS
segment, is used to prove that two entities involved in the
segment performed the handshake without any modification
by an attacker.

However, middleboxes could potentially give false infor-
mation to the client. To avoid such misbehavior, we propose
a security parameter block – an unforgeable cryptographic
proof of security information for each segment. Each block
contains the security parameters and their HMAC value. The
two entities of an maTLS segment, say segmenti,i+1, present
the security parameters of the segment, respectively for cross-
verification.

All the entities except the client in the maTLS session
generate the security parameter block. The basic structure of
the block is in the form of:

IDi||pi,i+1||Sign(ski, Hmac(aki,0, pi−1,i||pi,i+1))

One entity ei first generates an HMAC over the security
parameters in its two segments, namely segmenti−1,i and
segmenti,i+1, and signs on the resultant HMAC. Then, ei
prepends its identifier and the security parameters of the
segment in the direction of the server with the signature. When
the block is generated, ei forwards it toward the client.

For a server (S = en) that is only involved
in one segment, i.e., segmentn−1,n, the server sends
IDn||Sign(skn, Hmac(akn,0, pn−1,n)) in which the term
corresponding to pi,i+1 in the above expression is removed.

When the client receives a series of security parameter
blocks, it can confirm all security parameters negotiated be-
tween each entity by verifying the signature of signed HMACs.
Verification fails could be due to modified security parame-
ters, missing or incorrect order of the middleboxes; thus the
client must abort the negotiation process. Once the client can
successfully verify all the security parameters, accountability
keys, the order of the middleboxes in the maTLS session, it
can further decide whether to accept the session based on its

7

Notation Meaning
C Client
S Server
MBi ith Middlebox in the session (1 ≤ i ≤ n− 1)
ei ith Entity in the session where (e0 = C, en = S)
segmenti,j The maTLS segment between ei and ej
mi Message sent from ei
a||b a concatenated with b

PRF (a, b, c)
Pseudorandom function in [9] to derive keys
(a : secret, b : label, c : seed)

Sign(k,m) Signature function on m with a key k
H(m) Hash function on m

Hmac(k,m)
Keyed hash-based MAC function with a key k
on m

Ae(k,m) Authenticated encryption on m with a key k
(ski, pki) Entity ei’s (secret key, public key) pair
Certi Entity ei’s certificate
IDi Identity of ei. IDi = H(pki)
g Generator of a DH group
(a, ga) Ephemeral DH key pair

pi,j

Security parameters that includes the negotiated
version, the negotiated ciphersuite, the hashed
master secret, and the transcript between ei and
ej

aki,j
Accountability key of ei established with ej
(We simply write aki when j is fixed in the
context)

HMACi The result of Hmac(k,m) by ei
MLi Modification log generated by ei

TABLE II: Notation used in this paper

policy. For example, the client might abort the connection if
any of the segments is established with a weak algorithm such
as an RC4 [36].

(3) Valid Modification Check allows a client to audit which
entity has modified the message. When an entity forwards a
message to the next entity it also generates a cryptographic
proof, called a modification log (ML). Basically, it is to
compare the incoming and outgoing message from the entity
by attaching (1) a HMAC generated from both received and
sending message using its accountability keys (aki), (2) a
digest of the received message (H(mi+1)), and its identifier
(IDi). Assuming that the message is coming from the server
(en) to the client (e0), we can define the ML generated from
the ei, which is denoted as MLi:

IDi||H(mi+1)||Hmac(aki,0, H(mi)||H(mi+1))||MLi+1

Here, we can apply some optimization techniques to reduce
the size of the MLs in specific scenarios. First, the server does
not have a prior message, thus the MLn can be defined as
IDn||Hmac(akn,0, H(mn)). Second, when an entity (ei) does
not modify any message (i.e., read-only middlebox), we can
further reduce the size of the MLi by (1) simply generating a
HMACi from the previous HMACi+1 and (2) omitting its
received digest (H(mi+1)) and even its ID (IDi). Thus, if the
client detects a omitted ID while parsing the received ML, it
can assume that the message has not been modified among the
middleboxes with the omitted IDs. For example, if an entity
(ei) receives a message that has never been modified, the ML

that the entity received will be

IDn||Hmac(aki+1,0, Hmac(aki+2,0, · · · ,
Hmac(akn,0, H(mn)))

Once ei modifies the message, however, the ML produced
from ei will be

IDi||H(mi+1)||Hmac(aki,0, H(mi)||H(mi+1))

||IDn||HMACi+1

which implies that the message between the middlebox
ei+1 and en has never been modified.

Once the receiver (i.e., the client in this example) obtains
the series of MLs, it can extract the digests of all the modified
messages, track the identifiers of the middleboxes that per-
formed the write operation, and finally verify each ML using
its HMAC.

C. maTLS Handshake Protocol

A client performs an maTLS handshake to negotiate ac-
countability keys, to authenticate the server and middleboxes,
and to perform security parameter verification. The maTLS
handshake protocol, which extends TLS 1.2, is shown in
Figure 3a. In the first round-trip, the client expresses its
preference to perform the maTLS protocol by adding the
Middlebox_Aware extension to the ClientHello mes-
sage. The client generates its DH key pair (say, (a, ga)) and
inserts the DH public key (ga) into the extension. Then, the
client sends the ClientHello message with the highest
possible TLS version and a set of supporting ciphersuites.
On receiving the ClientHello, each middlebox finds the
client’s maTLS extension, generates its own DH key pair, and
extracts the list of DH public keys from the maTLS extension.
After that, it appends its own DH public key, and sends the new
ClientHello with the DH public keys toward the client’s
intended server. This process is repeated at every middlebox
on the way to the server.

The server generates its own DH key pair (say, (b, gb))
and sends the ServerHello message with the DH pub-
lic key (gb) and the selected TLS version and ciphersuite
for the maTLS segment. On receiving ServerHello, each
middlebox processes the message as the middlebox do on
ClientHello and determines the TLS version and the
ciphersuite to be used in the maTLS segment.

Then, each entity negotiates the TLS version and the
ciphersuite with its neighbor entity for each maTLS segment.
Furthermore, both endpoints receive the DH public keys from
all entities and each middlebox has two DH public keys (i.e.
the client’s and the server’s). With their own DH private keys,
all entities generate the accountability keys by using the PRF
function defined in [9] with the server’s DH public key and
the client’s DH public key as seeds. For a label, one of
the input parameters of the PRF function, we use the string,
“accountability key.”

The ServerCertificate message is sent after the
Hello messages. The server sends its own certificate and
each middlebox appends its middlebox certificate. The client

8

(a) The maTLS-DHE handshake protocol on TLS 1.2 (server-only authentication)

(b) The maTLS record protocol with a modification log.

Fig. 3: The maTLS protocol. The maTLS handshake protocol is responsible for explicit authentication and security parameter
verification, while the maTLS record protocol executes valid modification checks.

performs explicit authentication in order to accept the server
and the middleboxes. Then, the client maps each accountability
key to the corresponding identity, where an identity is a digest
of an entity’s public key. Although the server does not receive
the certificates, the server can identify the client from the
accountability key.

After receiving the certificates, each maTLS segment ex-
changes key materials via the ServerKeyExchange and
ClientKeyExchange messages. Using the key material, all
entities generate shared secrets of the segment.

Finally, Finished messages are exchanged to verify the
handshake between two peers in each segment, followed by a
newly defined ExtendedFinished message that includes
security parameter blocks from the server to the client. The
client performs security parameter verification and confirms
the proofs of private key possession by verifying the signatures
by processing the ExtendedFinished message.

D. maTLS Record Protocol

The maTLS record protocol provides data source authen-
tication, modification accountability, and path integrity during

data exchange. The maTLS record protocol is illustrated in
Figure 3b. For each message, the record protocol generates the
data source, initializes an ML, and inserts its source MAC. On
receiving the message and its ML, each middlebox processes
the ML as mentioned earlier. A read-only middlebox extracts
the final HMAC from the ML, performs the HMAC operation
over the previous HMAC to put its fingerprint, and updates the
MAC. A writer middlebox appends the modification MAC to
the ML.

Upon receipt of the message, the destination performs
valid modification checks by validating the ML, aborting the
connection if there has been an invalid modification by middle-
boxes. The destination also verifies the source of the incoming
message; for example, a server can abort the connection if the
HTTP request message (over maTLS) did not originate from
the client. Furthermore, since all the middleboxes in the session
leave their own MACs in the ML whenever the data is passed
the middleboxes, the endpoints can confirm whether the order
of the middleboxes is preserved by verifying the MACs with
the accountability keys in sequence.

9

Security Goal Code Snippet Description

Server Authentication

All C S nonces #tc.
C_HandshakeComplete(C, S, nonces)@tc

==>
Ex #ts.
S_HandshakeComplete(C, S, nonces)@ts &
(#ts < #tc)

When a client believes she has
finished an maTLS handshake, the
corresponding server also believes
he has established a session with
the client, sharing the same ac-
countability key data

Middlebox
Authentication

All C MB last next nonces #tc.
C_MB_HandshakeComplete(C, MB, last, next, nonces)@tc

==>
Ex #tmb.
MB_C_HandshakeComplete(C, MB, last, next, nonces)@tmb

&
(#tmb < #tc)

When the client confirms a mid-
dlebox as part of the handshake,
the client shares accountability key
data with them

Segment Secrecy

All C M S nonces params #tc #tcomplete.
C_ParameterVerification(C, M, nonces, params)@tc &
C_HandshakeComplete(C, S, nonces)@tcomplete

==>
Ex #tmb.
MB_SecurityParameters(C, M, nonces, params)@tmb &
(#tmb < #tc)

When the maTLS session is estab-
lished, a client correctly verifies the
security parameters used in each
segment

Individual Secrecy

All C S nonces #tc #tcomplete.
C_HandshakeComplete(C, S, nonces)@tcomplete

==> (
All a1 a2 b1 b2 keyA keyB #tmb1 #tmb2.
SegmentKeyMade(a1, a2, nonces, keyA)@tmb1 &
SegmentKeyMade(b1, b2, nonces, keyB)@tmb2

==> (
not (keyA = keyB) |
(a1 = b1 & a2 = b2)

))

At the end of an maTLS hand-
shake, each segment has estab-
lished distinct TLS keys

Data Authentication

All C S nonces req resp #trecv.
C_BelievesSentFromServer(C, S, nonces, req, resp)

@trecv
==>
Ex #tresp.
S_Sent(C, S, nonces, req, resp)@tresp

When a client receives a message
from the server during the maTLS
record phase, the hash value from
the server is a faithful digest of the
original message

Modification
Accountability

All C S nonces req #trecv.
C_ReceiveResponse(C, S, req, nonces)@trecv

==> (
All before after M #tc.
C_ModificationChecks(C, M, req, nonces, before,

after)@tc &
(#tc < #trecv) | (#tc = #tcrecv)

==> (
Ex #tmb.
MB_Modification(C, M, req, nonces, before, after)

@tmb &
#tmb < #tc
))

When a client receives a message
during the maTLS record phase,
the client believes that a middlebox
has changed the message if and
only if that middlebox did make a
change

Path Integrity

All a1 a2 a3 nonces #ta #tb.
PathOrderingEstablished(nonces, a1, a2)@ta &
PathOrderingEstablished(nonces, a2, a3)@tb

==> (
All id #tf. ForwardAction(nonces, id, a2, a3)@tf
==> (

Ex #tp. ForwardAction(nonces, id, a1, a2)@tp &
#tp < #tf

))

The client knows the order of
the intermediate middleboxes in an
maTLS session. Messages will al-
ways travel in this order.

TABLE III: Security Lemmas. Tamarin representations of the core security goals of the maTLS handshake and record phase
protocols. The full specifications are presented in our public repository.

10

VI. SECURITY VERIFICATION

We analyzed the security goals of the maTLS protocol
using Tamarin [24], an automated verification tool. Tamarin
is built upon a multiset rewriting model, which supports the
unbounded analysis of security protocols based on a robust
equational theory. Tamarin is capable of accurately modeling
Diffie-Hellman style key exchange, and is built upon the
Dolev-Yao adversary.

The Tamarin execution model observes the development of
a series of states, each of which is a multiset of facts. Each fact
represents a detail about the current execution: for example, the
Out(msg) fact indicates that the message msg has been sent
out to the communication network, while the fact Ltk(A, k)
might represent that the agent A has a long-term encryption
key k. Facts are added and removed from the state through
a series of user-defined rules, each of which is denoted by a
triple l → [a] → r. Here, l, a, and r are collections
of facts — for the rule to execute, the facts l are removed
from the state and replaced by the facts r. The facts a form a
trace: an indelible history of event markers that describe the
progression of the protocol’s execution.

Security goals, named lemmas, are expressed as first-order
logic formulae describing requirements on the existence and
ordering of certain events, usually quantified over all possible
executions. If a formula is violated (generally indicating that
a goal has not been met), Tamarin generates a graph showing
a trace that leads to the contradicting state.

A. Protocol Rules

The protocol rules for maTLS can be divided broadly
into three categories. The first handles the setup rules of the
protocol. These represent events such as the registration of
server or middlebox certificates. Second, a set of corrup-
tion rules describe the main ways in which an agent may
violate their specification — for example, giving their long-
term private key to the adversary. Finally, the protocol rules
describe the actual actions of the participants. The protocol
rules are again divided into two parts, namely Handshake rules
and Communication rules, to capture the maTLS handshake
protocol and the maTLS record protocol, respectively.

B. Security Claims

With the protocol rules, we modeled the core security goals
of maTLS. We formally describe our security goals in the form
of the first order logic formulae, examples of which are shown
in Table III. Note that the goals shown in the table are slight
simplifications of those in the full analysis (for example, they
must be taken modulo corruption).

The results of the analysis show that the maTLS protocol
satisfies the core security goals.6

VII. EVALUATION

A. Experiment Settings

To demonstrate the feasibility of the maTLS protocol, we
implemented it using the OpenSSL library. Our testbed consists

6The full Tamarin implementation can be found at our public repository at
https://github.com/middlebox-aware-tls/matls-tamarin.

Intra-country Intra-region Inter-region
a

0

200

400

600

800

1000

Ti
m

e
(m

s)

maTLS
mcTLS
SplitTLS

(a) HTTP Load Time

Intra-country Intra-region Inter-region
a

0

100

200

300

Ti
m

e
(m

s)

maTLS
mcTLS
SplitTLS

(b) Data Transfer Time

2 4 6 8
Number of middleboxes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(m

s)

SPV
EA
VMC

(c) Integrity Verification Time

0 2 4 6 8
Number of middleboxes

 0

 2

 4

 6

 8

Ti
m

e
(m

s)

(d) CPU Processing Time

Fig. 4: Numerical results reveal that maTLS incurs slightly
more delay, ranging from 10.22ms to 32.52ms against mcTLS
and SplitTLS, mainly due to the signature verification and key
generation needed in the maTLS handshake. (EA: Explicit
Authentication, SPV: Security Parameter Verification, VMC:
Valid Modification Checks)

of a client (C), a client-side middlebox (MBC), a server-
side middlebox (MBS), and a server (S)7. The server-side
middlebox and the server are equipped with an Intel Xeon CPU
E5-2676 at 2.40GHz with 1GB memory. We used a virtual
machine with an Intel Core i7 at 2.30GHz and 1GB memory
for the client-side middlebox, and a virtual machine with an
Intel Broadwell CPU at 3.30GHz and 1GB memory for the
client.

During our experiments, the client and the client-side
middlebox were located on a campus network. We ran tests
with the server (and the server-side middlebox) located at three
different locations: in the same country (intra-country testbed),
in different countries but the same region (intra-region testbed),
and in different continents (inter-region testbed). The round-
trip times between two entities in each scenario are shown in
Table IV.

After establishing an maTLS session, the client requests an
HTML page of 1KB with an HTTP GET message, respectively,
terminating the connection after completing the download of
the corresponding HTTP response. Each plotted value is the
average of 100 measurements. We compare the performance
overhead of maTLS with those of SplitTLS and mcTLS [30],
the latter of which is the original protocol of TLMSP.

We used an ECDH key exchange algorithm over the
secp256r1 elliptic curve for the accountability keys, the
SHA256 function for the hash algorithm, and a SHA256-based
ECDSA for the signature algorithm.

7The source code of the library as well as the test applications are available
at https://github.com/middlebox-aware-tls/matls-implementation

11

Testbed C-MBC MBC -MBS MBS − S
Intra-country 1.136ms 4.944ms 0.551ms
Intra-region 1.136ms 35.896ms 0.537ms
Inter-region 1.136ms 192.818ms 0.610ms

TABLE IV: Networking Settings. The round-trip times
between two points in each scenario are shown, where C and
MBC are in the same campus, and MBS and S are in the
same data center.

B. HTTPS Page Load Time

We first evaluate the time elapsed to fetch an 1KB file from
the server in the maTLS protocol, which is compared with the
SplitTLS and mcTLS protocols. Figure 4a summarizes the time
taken from starting a TCP handshake to finishing the download
of the content. We observe that the maTLS protocol introduces
a slight delay (10.22ms – 32.52ms) compared to SplitTLS and
mcTLS in the general case.

We believe this is mainly due to the message order
dependency in maTLS. Unlike SplitTLS, where each TLS
segment is established completely independently, the maTLS
segments are established piecewise sequentially as some sig-
naling messages (e.g., ClientHello, ServerHello,
ServerCertificate) must be exchanged between the
client and the server through the middleboxes in sequence.
Thus, in maTLS, each middlebox needs to wait until these
messages arrive while performing the handshake.

To quantify the overhead that the maTLS record protocol
requires, Figure 4b shows the data transfer time, which starts
at the client sending an HTTP GET (a single packet) and
ends at the client receiving an HTTP RESPONSE (a single
packet). Interestingly, we notice that the delay time of the
maTLS record protocol is similar to those of the SplitTLS
and mcTLS record protocols. For example, in the intra-region
testbed scenario, the data transfer time is 39.92ms, 39.90ms,
and 41.28ms in maTLS, SplitTLS, and mcTLS, respectively.

From Figures 4a and 4b, we conclude that the maTLS
overhead is mainly due to the setup of an maTLS session,
which implies that once the session is established, maTLS
provides similar performance to the others while preserving
all security merits that we have discussed.

C. Scalability of Three Audit Mechanisms

Next, we evaluate the scalability of the maTLS audit
mechanisms: Explicit Authentication (EA), Security Parameter
Verification (SPV), and Valid Modification Checks (VMC).
Note that the number of required HMAC operations increases
in proportion to the number of the middleboxes. Thus we
now wish to check the scalability of the HMAC operations
in maTLS for its feasibility. To this end, we increase the
number of middleboxes in the same data center to quantify
the computational overhead due to the audit mechanisms by
measuring the validation time for each arriving packet (Figure
4c).

We observe that the overhead of the three audit mechanisms
is almost negligible. For example, it takes 0.195ms to verify
security parameter blocks, 0.203ms to validate certificates, and
0.013ms to check the modification record for two middleboxes.

Also, we observe that the overhead increases linearly with
the number of middleboxes; for each incoming packet, only
an extra 0.045ms and 0.063ms overhead is required for the
explicit authentication checks and security parameter verifica-
tion, respectively. It is worth noting that the delay of explicit
authentication is mainly due to certificate validation, which
accounts for around 95% of the delay. Likewise, signature
verification accounts for more than 91% of the delay of
the security parameter verification. The overhead for valid
modification checks is marginal as it uses HMAC operations to
verify the ML, which turns out to be only 0.026ms, even with
8 middleboxes. We believe that the auditing mechanisms of
maTLS can achieve their goals without incurring a substantial
delay.

D. CPU Processing Time

Next, we evaluate the CPU processing time for an maTLS
handshake as the number of middleboxes increases. We place
all the middleboxes and the endpoints in the same data center
to minimize the impact of networking delay. As shown in Fig-
ure 4d, the CPU processing time for the maTLS handshake also
linearly increases by on average 0.398ms for each middlebox.
This increment is mainly due to the multiplication operations
required to add an ECDH shared secret, and generating ac-
countability keys using a PRF, which account for 0.367ms
(92.2% of the increment) and 0.016ms (4.0% of the increment),
respectively.

VIII. DISCUSSIONS

A. Incremental Deployment

The maTLS protocol can be executed even if not all the
entities support it. In other words, a session can have both
maTLS segments and TLS segments at the same time. For
example, when a client and two middleboxes support maTLS
and the server does not, maTLS segments can be set up
between the client and the two middleboxes. In this case, the
middlebox farthest from the client in the maTLS segments
establishes a standard TLS segment with the server. Following
the maTLS protocol, all the middleboxes in the maTLS seg-
ments send their own certificate to the client. Therefore, the
client will receive a bundle of middlebox certificates, but not
the certificate including the server’s name. This will cause the
client to issue a warning message.

To resolve the problem, we require that the farthest middle-
box in the maTLS segments should send not only its middlebox
certificate but also the received certificate from the standard
TLS segment. This allows the client to receive the server’s
certificate and thus validate it. Unfortunately, this requires that
the client must trust that the middlebox sent the certificate
that it received, and correctly validated the server certificate
in the standard TLS handshake. However, the client can still
authenticate the participating middleboxes and verify their
security parameters, which is not be supported by the current
practice.

B. Abbreviated Handshake

maTLS supports abbreviated handshakes using session
IDs/tickets in TLS 1.2, or pre-shared keys in TLS 1.3, which
need not extend the handshake. A client can resume an maTLS

12

session using the abbreviated handshake protocol. The mid-
dlebox (closest to the server) can resume its maTLS segment
with the server, as it knows the session ID, pre-shared key,
or session ticket. The middlebox, however, does not have the
accountability key shared between the client and the server;
thus, the server is able to detect incorrect session resumptions
by verifying the modification log if an adversary attempts to
impersonate the middlebox.

C. Mutual Authentication

Like the standard TLS protocol, maTLS also supports
mutual authentication by sending a CertificateRequest
message to the client during the TLS handshake. In this
case, the client also sends her certificate upon receipt of the
CertificateRequest message from the server. The mid-
dleboxes can simply append their certificates to her certificates
while being forwarded to the server so that both the client
and the server authenticate each other’s certificates. After that,
the client and the server each send a ExtendedFinished
message to verify the possession of their private keys.

D. TLS 1.3 Compatibility

TLS 1.3 [12] has been recently approved and is expected to
be widely deployed. The maTLS protocol can support TLS 1.3
by adding a ExtendedFinished message after a server’s
Finished message in the server-only authentication mode.
The only difference is that TLS 1.2 requires two round-trips
for session establishment, while TLS 1.3 only requires one and
a half round trips. Unfortunately, this means that individual
segments running TLS 1.2 will negate some of the speed-up
benefits from TLS 1.3.

IX. RELATED WORK

A. Discussion on Middleboxes

Studies on the SplitTLS practice: Frack et al. [4] showed
that content providers sharing a private key with a hosting
provider (such as CDNs) may significantly affect the security
of the HTTPS ecosystem; an attacker who compromises ten
hosting providers is estimated to obtain the control of 45% of
all content providers. Lin-Shung et al. [17] demonstrated that
there were a large number of forged certificates in the wild,
most of which were generated by client-side middleboxes.
They also showed that these certificates can be used to trick
victims, who had installed the root certificates of the forged
certificates.

Debates on Explicit middleboxes: There have been two
IETF drafts that highlight the problems with HTTPS middle-
boxes and propose new design principles. Both Nottingham
[32] and Narayanan [27] emphasize that endpoints should be
aware of middleboxes, and that their modifications on the
messages should be detectable.

B. Proposals

TLS extensions: Several proposals have been made to
extend the TLS protocol to support middleboxes.

(1) Explicit Trusted Proxy [22]: This work
proposes that middleboxes should have their own certificates

for authentication. Each middlebox certificate should be an EV
certificate with proxyAuthentication value in the Extended
Key Usage field. This makes middleboxes visible with their
certificates; however, endpoints can only authenticate the im-
mediately adjacent middleboxes, and cannot get any informa-
tion about the other middleboxes.

(2) TLS Keyshare extension [31]: In this proto-
col, the client initiates a TLS handshake by sending infor-
mation about authorized middleboxes to the server. During
the handshake, the middleboxes inspect the TLS handshake
message and notify the endpoints of any unsupported ci-
phersuites. After the session is established by the endpoints,
the authorized middleboxes receive the session key from the
endpoints, allowing them to perform their functionality. Since
the same key is shared across all the segments, the keystream
is reused, which weakens overall security. Furthermore, this
work does not consider modification-related properties.

(3) TLS ProxyInfo extension [45]: Each split
segment is separately established, as in the maTLS protocol.
All the middleboxes pass their certificates and negotiated
security parameters with their signatures to the endpoints,
who can authenticate all the middleboxes and confirm security
parameters. However, in this protocol, the endpoints must
blindly trust the information about each segment from each
middlebox. Furthermore, data source authentication, modifica-
tion accountability, and path integrity are not considered.

(4) Multi-context TLS (mcTLS) [30]: mcTLS
aims to restrict the behavior of middleboxes by applying the
least privilege principle. Endpoints generate two MAC keys
for middleboxes: read and write. If a middlebox is authorized
to read and write, it obtains both MAC keys. If it can only
read the TLS traffic, it gets only the read MAC key. All the
middleboxes are authenticated from their certificates. However,
as mcTLS uses one session key, it undermines the security
of the session if any of middleboxes involved is a writer.
Furthermore, after modification by a writer middlebox, the
receiver cannot know who has sent the data.

(5) Transport Layer Middlebox Security P-
rotocol (TLMSP): TLMSP is an improved version of
mcTLS, which is being standardized in ETSI. Based on
mcTLS, it optionally introduces an audit trail that records
each middlebox’s inbound HMAC and outbound HMAC to
check the modification by the middlebox and the order of the
middleboxes in the chain. However, TLMSP uses a top-down
approach, which is not suitable for incremental deployment
due to the reasons described in Section V-B.

(6) Middlebox TLS (mbTLS) [29]: mbTLS allows
outsourced middleboxes to participate in a TLS session.
mbTLS extends TLS for middleboxes running on Intel SGX
technology. When endpoints perform a TLS handshake with
each other, each endpoint opens a secondary TLS session with
all the middleboxes that it leverages for remote attestation. Af-
ter the primary TLS handshake, the endpoints send the session
key to each of the middleboxes. However, mbTLS offers no
information about each segment’s secrecy or changes to TLS
traffic. Instead, the endpoints rely on the TEE technology to
assure middlebox integrity.

Cryptographic approaches: BlindBox [41] and
Embark [20] allow a monitoring gateway (in the client’s

13

network) to read TLS traffic without revealing its content
to middleboxes on a third party cloud. To this end, they
introduce a secondary channel using a special encryption
technique (such as searchable encryption or order-preserving
encryption). The client communicates with the server over
a TLS session, and delivers the packets to the middleboxes
via the secondary channel before the client sends packets to
the server. Private data are not leaked to the middleboxes in
these proposals, but they have two main drawbacks. First,
the possible functionality of middleboxes is limited by the
encryption techniques. Second, they require another round trip
to middleboxes over the secondary channel before sending
the data to the other endpoint.

TEE approaches: SafeBricks [35], ShieldBox [43],
and SGX-Box [16] focus on guaranteeing security and protect-
ing privacy (from middleboxes) by building middleboxes over
TEE technology. The three schemes have different properties.
For example, SafeBricks aims to apply the least privi-
lege principle to middleboxes by using a type-safe language.
ShieldBox seeks to supports syscalls in an enclave, and
SGX-Box offers programmability to middlebox developers for
easy deployment.

X. CONCLUSION

In this paper, we propose middlebox-aware TLS, dubbed
maTLS, that allows middleboxes to participate in TLS net-
working in a visible and accountable fashion. The maTLS
protocol seeks to achieve the following security goals: server
authentication, middlebox authentication, path secrecy, data
source authentication, and modification accountability, which
are not comprehensively solved by the related work. To this
end, maTLS relies on multiple mechanisms such as middle-
box certificates, middlebox Transparency, security parameter
blocks, and modification records to make middleboxs visible
and auditable. We also analyze the security properties of the
maTLS protocol using Tamarin, which formally proves that
maTLS satisfies those goals. Furthermore, testbed-based exper-
iments show that maTLS accomplishes those goals with mostly
marginal performance overhead. For instance, the additional
delays against the SplitTLS and the mcTLS protocols are less
than 33ms, which incurs mainly due to the signaling overhead
in a handshake. Numerical results also show that the maTLS
protocol is scalable in terms of number of middleboxs.

ACKNOWLEDGEMENT

The authors would like to appreciate the anonymous
reviewers for their comments to improve our paper. Also,
many thanks to David T. Naylor for his comments and advice.
This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No.2016-0-00160, Versatile
Network System Architecture for Multi-dimensional Diversity)

REFERENCES

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,
J. A. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta,
B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann,
“Imperfect forward secrecy: How diffie-hellman fails in practice,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015.

[2] W. Ashford, “Privdog ssl compromise poten-
tially worse than superfish,” February 2015. [On-
line]. Available: http://www.computerweekly.com/news/2240241126/
PrivDog-SSL-compromise-potentially-worse-than-Superfish

[3] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of tls,” in
Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015,
pp. 535–552.

[4] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mis-
love, and C. Wilson, “Measurement and analysis of private key sharing
in the https ecosystem,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 628–640.

[5] T. Chung, D. Choffnes, and A. Mislove, “Tunneling for transparency: A
large-scale analysis of end-to-end violations in the internet,” in Internet
Measurement Conference (IMC), 2016.

[6] Comodo, “Comodo report of incident - comodo detected and
thwarted an intrusion on 26-mar-2011,” 2011. [Online]. Available:
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

[7] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet x.509 public key infrastructure certificate and certificate revo-
cation list (crl) profile,” RFC 5280, Internet Engineering Task Force,
May 2008, http://www.ietf.org/rfc/rfc5280.txt.

[8] X. de Carné de Carnavalet and M. Mannan, “Killed by proxy: Analyzing
client-end tls interception software,” in Network and Distributed System
Security Symposium, 2016.

[9] T. Dierks, “The transport layer security (TLS) protocol version 1.2,”
2008. [Online]. Available: https://tools.ietf.org/pdf/rfc5246.pdf

[10] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Transactions on information theory, vol. 29, no. 2, pp. 198–208,
1983.

[11] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein,
M. Bailey, J. A. Halderman, and V. Paxson, “The security impact of
https interception,” in Network and Distributed Systems Symposium,
2017.

[12] E. Rescorla, “The transport layer security (tls) protocol version
1.3,” 2018. [Online]. Available: https://www.rfc-editor.org/rfc/pdfrfc/
rfc8446.txt.pdf

[13] Facebook, “Introducing our certificate transparency monitoring tool.”
[Online]. Available: https://www.facebook.com/notes/protect-the-graph/
introducing-our-certificate-transparency-monitoring-tool/
1811919779048165/

[14] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring HTTPS adoption on the web,” in 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada, August
16-18, 2017., 2017.

[15] Gaurang, “Nokia’s mitm on https traffic from their phone,”
2013. [Online]. Available: https://gaurangkp.wordpress.com/2013/01/
09/nokia-https-mitm/

[16] J. Han, S. Kim, J. Ha, and D. Han, “Sgx-box: Enabling visibility on
encrypted traffic using a secure middlebox module,” in Proceedings
of the First Asia-Pacific Workshop on Networking. ACM, 2017, pp.
99–105.

[17] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing forged
ssl certificates in the wild,” in Security and Privacy (SP), 2014 IEEE
Symposium on. IEEE, 2014, pp. 83–97.

[18] ITU-T RECOMMENDATION, “Information technology–open systems
interconnection–the directory: Public-key and attribute certificate frame-
works,” 2000.

[19] J. Jarmoc and D. Unit, “SSL/TLS interception proxies and transitive
trust,” Black Hat Europe, 2012.

[20] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud.” in NSDI, vol. 16, 2016,
pp. 255–273.

[21] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” Tech.
Rep., 2013.

[22] S. Loreto, J. Mattsson, R. Skog, H. Spaak, G. Gus, and D. Druta,
“Explicit trusted proxy in http/2.0,” 2012. [Online]. Available:
https://tools.ietf.org/html/draft-loreto-httpbis-trusted-proxy20-01

14

[23] D. McGrew, D. Wing, Y. Nir, and P. Gladstone, “TLS proxy
server extension,” 2012. [Online]. Available: https://tools.ietf.org/html/
draft-mcgrew-tls-proxy-server-01

[24] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for
the symbolic analysis of security protocols,” in International Conference
on Computer Aided Verification. Springer, 2013, pp. 696–701.

[25] D. Meyer, “Nokia: Yes, we decrypt your https data, but don’t worry
about it,” 2013. [Online]. Available: http://gigaom.com/2013/01/10/
nokia-yes-we-decryptyour-https-data-but-dont-worry-about-it/

[26] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X. 509
internet public key infrastructure online certificate status protocol-ocsp,”
1999.

[27] V. Narayanan, “Explicit proxying in http-problem statement
and goals,” 2013. [Online]. Available: https://tools.ietf.org/pdf/
draft-vidya-httpbis-explicit-proxy-ps-00.pdf

[28] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the s in
https,” in Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies. ACM, 2014, pp.
133–140.

[29] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste,
“And then there were more: Secure communication for more than
two parties,” in Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies. ACM, 2017, pp.
88–100.

[30] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn,
D. López, K. Papagiannaki, P. R. Rodriguez, and P. Steenkiste, “Multi-
context tls (mctls): Enabling secure in-network functionality in tls,”
in ACM SIGCOMM Computer Communication Review, vol. 45, no. 4.
ACM, 2015, pp. 199–212.

[31] Y. Nir, “A method for sharing record protocol keys with a
middlebox in TLS,” 2012. [Online]. Available: https://tools.ietf.org/id/
draft-nir-tls-keyshare-02.html

[32] M. Nottingham, “Problems with proxies in http,” 2014. [Online]. Avail-
able: https://tools.ietf.org/pdf/draft-nottingham-http-proxy-problem-01.
pdf

[33] D. O’Brien, “Certificate transparency enforcement in google chrome,”
2018. [Online]. Available: https://groups.google.com/a/chromium.org/
forum/#!msg/ct-policy/wHILiYf31DE/iMFmpMEkAQAJ

[34] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala, “TLS proxies:
Friend or foe?” in Proceedings of the 2016 Internet Measurement
Conference. ACM, 2016, pp. 551–557.

[35] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks:
Shielding network functions in the cloud,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’18), Renton,
WA, 2018.

[36] A. Popov, “Prohibiting rc4 cipher suites,” 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7465

[37] E. Rescorla, “HTTP over TLS,” 2000. [Online]. Available: https:
//tools.ietf.org/html/rfc2818

[38] J. Schlyter and P. Hoffman, “The DNS-based authentication of named
entities (DANE) transport layer security (TLS) protocol: TLSA,” 2012.
[Online]. Available: https://tools.ietf.org/pdf/rfc6698.pdf

[39] T. J. Seppala, “New lenovo pcs shipped with factory-installed
adware,” 2015. [Online]. Available: https://www.engadget.com/2015/
02/19/lenovo-superfish-adware-preinstalled/

[40] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network
processing as a cloud service,” vol. 42, no. 4. ACM, 2012, pp. 13–24.

[41] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
packet inspection over encrypted traffic,” vol. 45, no. 4. ACM, 2015,
pp. 213–226.

[42] SSLMate, “Cert spotter.” [Online]. Available: https://sslmate.com/
certspotter/

[43] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“Shieldbox: Secure middleboxes using shielded execution,” in Proceed-
ings of the Symposium on SDN Research. ACM, 2018, p. 2.

[44] G. Tsirantonakis, P. Ilia, S. Ioannidis, E. Athanasopoulos, and M. Poly-
chronakis, “A large-scale analysis of content modification by open

http proxies,” in Network and Distributed System Security Symposium
(NDSS), 2018.

[45] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson, “In-
ternet x. 509 public key infrastructure (PKI) proxy certificate profile,”
2004.

[46] L. Waked, M. Mannan, and A. Youssef, “To intercept or not to intercept:
Analyzing tls interception in network appliances,” in Proceedings of the
2018 on Asia Conference on Computer and Communications Security.
ACM, 2018, pp. 399–412.

[47] O. Williams, “Google dropping cnnic root ca after trust breach,” 2015,
https://thenextweb.com/insider/2015/04/02/google-to-drop-chinas-
cnnic-root-certificate-authority-after-trust-breach/.

15

