
MQTLS: Toward Secure MQTT Communication
with an Untrusted Broker

Hyunwoo Lee
Computer Science and Engineering

Seoul National University
Seoul, Korea

hwlee2014@mmlab.snu.ac.kr

Junghwan Lim
Computer Science and Engineering

Seoul National University
Seoul, Korea

jhlim@mmlab.snu.ac.kr

Ted “Taekyoung” Kwon
Computer Science and Engineering

Seoul National University
Seoul, Korea

tkkwon98@gmail.com

Abstract—The publisher–subscriber (pub/sub) paradigm is one
of the promising communication models to meet the requirements
such as interoperability and support of heterogeneity for the
Internet-of-Things (IoT). Message Queueing Telemetry Transport
(MQTT), one of the protocols based on the pub/sub model, is
widely used in practice with public brokers by Eclipse Mosquitto
or HiveMQ. A broker in the pub/sub model, however, is in-
trinsically a man-in-the-middle between clients (i.e., publishers
and subscribers); thus, a broker can read and alter all the
messages delivered from publishers to subscribers. Therefore,
both publishers and subscribers should not exchange confidential
messages via an untrusted broker or should use it in-between
them at risk.

We propose MQTLS, an MQTT-aware secure communication
protocol among publishers, subscribers, and brokers, while re-
stricting brokers not to read any messages from publishers, ex-
cept topics that need for message delivery. The MQTLS protocol
is secure, based on our novel security definition called client-
to-broker-to-client (CBC) security semantics for the pub/sub
model. Our OpenSSL-based MQTLS proof-of-concept shows
that MQTLS increases the delay time at the initial setup due
to asymmetric signature/verification. However the delay time
becomes marginal – only 4.06% at the high-end device and
10.04% at the low-end device compared with the standard TLS
protocol – after the key is distributed.

Index Terms—publisher-subscriber model, MQTT, TLS

I. INTRODUCTION

The Internet-of-Things (IoT) is in the spotlight as the
technology that enriches the future of mankind [6], [8]. With
IoT, we expect automated sensing and actuating systems that
lead to smart cities, smart factories, or smart homes. However,
these raise several challenges such as interoperability and
support of heterogeneity that should be resolved [5]. Therefore,
the publisher-subscriber (pub/sub) paradigm becomes one of the
promising communication models to integrate heterogeneous
networks and interconnect many devices. For example, a broker
that is located between all the publishers and subscribers may
have diverse network interfaces such as WiFi or Zigbee; thus,
devices with different interfaces can exchange data if they
support the same application protocol. Note that among the
protocols that adopt the pub/sub model, Message Queueing
Telemetry Transport (MQTT) [15] is widely used in practice
such as in Facebook Messenger [17] or BMW Mobility
Services [9] due to its simplicity.

In MQTT, a broker gets all the messages from publishers
and forwards the messages to subscribers. Therefore, both
publishers and subscribers should not exchange confidential
messages via an unreliable broker, or should use it at risk
noting that a broker can read and manipulate all the messages.
If a broker is compromised, the adversary can learn and leak
all the messages that may include sensitive information (e.g.,
healthcare data [16]); not to mention, a compromised broker
can manipulate sensing data that might lead to wrong decisions.
Unfortunately, the security of the off-the-shelf broker such as
HiveMQ [2] or Eclipse Mosquitto [1] mainly focuses on secure
communications or authentication/authorization only between
a broker and a client (i.e., a publisher or a subscriber), not that
of between clients or that of a broker itself [3], [4].

We propose MQTLS, an MQTT-aware secure communication
protocol in-between publishers and subscribers while limiting
a broker not to access payloads in messages. With MQTLS,
subscribers can authenticate a publisher when they subscribe
to a topic and the confidentiality and the integrity of messages
from the publisher are guaranteed. Therefore, MQTLS provides
a way to communicate with peers even over untrusted brokers.

To show feasibility of MQTLS, we implement MQTLS with
OpenSSL and evaluate the performance overhead compared
with the standard TLS protocol. Numerical results show that
the overhead is concentrated at the initial setup stage and after
setup the load became marginal.

In sum up, our contribution points are as follows:

• We define a new client-to-broker-to-client (CBC) security
semantics for the publish/subscribe model.

• We design an MQTT-aware TLS protocol, dubbed
MQTLS, based on the CBC security semantics.

• We implement MQTLS with the OpenSSL library and
show the performance overhead by MQTLS is practical.

The paper is organized as follows. We first introduce the
concepts (§II) and explain the problems (§III). Next, we propose
MQTLS (§IV), followed by its security analysis (§V) and
performance evaluation (§VI). Finally, we discuss related work
(§VII) and finalize with concluding remarks (§VIII).

II. BACKGROUND

A. Message Queueing Telemetry Transport (MQTT)

Message Queueing Telemetry Transport (MQTT) [15], one
of the pub/sub communication protocols, is a simple and
lightweight messaging protocol to be used in various situations
such as constrained environments. In MQTT, there are three
participants called publishers, subscribers, and a broker (or an
MQTT server). We refer to both publishers and subscribers
as clients. Publishers send messages, each of which consists
of a topic and a payload (an actual content), to a broker
and subscribers receive messages based on the topic they
have subscribed, while a broker is used to store and forward
messages from publishers to subscribers. There can be many
subscribers per topic; thus, MQTT provides an efficient way
to distribute messages in one-to-many communications.

Specifically, a client (a publisher or a subscriber) initiates
the protocol with CONNECT to a broker. The broker then
replies with CONNECT ACK to confirm that the connection is
established. After that, the client sends a message indicating
his intention according to his role. For example, the subscriber
sends SUBSCRIBE that contains a topic to a broker, followed by
the broker’s SUBSCRIBE ACK to acknowledge the subscriber’s
subscription. Then, the subscriber can receive all the messages
related to the topic via the confirmed connection until the
subscriber explicitly sends DISCONNECT to the broker to close
the connection. On the other hand, the publisher sends a
PUBLISH message that includes a topic and a payload to the
broker. On receiving the message, the broker inspects a topic
in the message and forwards it to all the associated subscribers.
Note that the broker needs to know only a topic, not a payload,
to deliver messages.

B. Transport Layer Security

Transport Layer Security (TLS) [7], [14] is the most widely
used security protocol on the Internet. The protocol guarantees
end-to-end security with three main goals [14] – namely,
authentication, confidentiality, and integrity. Authentication is
a property that guarantees that the secure channel is established
only with the intended peer. Confidentiality means that no one
except two endpoints can see the messages between them,
while integrity ensures that no one except two endpoints can
modify the message on-the-fly.

To achieve the above goals, TLS consists of two sub-
protocols called the TLS handshake protocol and the TLS
record protocol. The former is the protocol of which the
purpose is to establish shared secrets for encryption while
authenticating each other. The latter is the protocol that is to
exchange messages between two endpoints with confidentiality
and integrity. Note that the RFC5246 document (TLS 1.2) [7]
specifies how to extend the TLS protocol (i.e., by ClientHello
and ServerHello).

III. PROBLEM SCOPE

Our scenario of interest. We consider a scenario that a group
of clients, e.g., a user or a device, wants to communicate
with each other via a broker. The messages can include

Fig. 1: The current security model in the pub/sub model
with TLS. The security of the pub/sub model mainly relies
on the TLS protocol only between a broker and a client. We
call this scheme the standard TLS.

private messages; thus, publishers want to authorize subscribers.
Examples can be online private chat rooms, healthcare sensors,
or other sensing data in which the confidentiality and integrity
of the data are critical requirements. We assume clients have
their credentials, such as X.509 certificates or passwords, to
identify themselves.
Status-quo. The current security in the MQTT system relies
on the TLS protocol between a broker and a client [3], [4],
as described in Figure 1. That is, when a publisher wants to
distribute his message, he initially establishes a TLS session
with a broker while authenticating the broker and sends the
message to the broker. A subscriber who wants to fetch the
message also establishes a TLS session with the broker and
then gets the message with the relevant topic.
Threats in the status-quo. Note that the current security
model only considers a passive network adversary that can
monitor the network and an active network adversary that can
insert, drop, alter, or reorder the packets on-the-fly, which
are assumed threats in the TLS protocol. We should consider
the security regarding the broker that stores and forwards all
the messages between publishers and subscribers as well if
messages include any sensitive information. There are two main
problems, assuming an honest-but-curious broker as well as a
passive and active network adversary on the current pub/sub
model, as follows:

• Passive attacks: A broker can read all the messages
received. In other words, a broker not only can know
sensitive information but also can leak messages to the
others who are not authorized on a specific topic.

• Active attacks: A broker can insert/delete/alter/reorder a
message received from publishers. For example, a broker
can insert false messages to subscribers, impersonating
publishers; delete important control messages from pub-
lishers; alter messages with wrong information; or reorder
messages to make a subscriber confused.

Out-of-scope attacks. We do not consider denial-of-service
(DoS) attacks. In this regard, a modification on topics by a
broker is not a concern since topics are only to be used for
delivery and if they are modified, then subscribers cannot
receive the message. We believe this is just a DoS attack
without other threats.

IV. THE MQTLS PROTOCOL

In this section, we introduce MQTLS short for an MQTT-
aware TLS protocol. Before specifying the protocol, we propose
client-to-broker-to-client (CBC) security semantics that address
the threats discussed in §III. The MQTLS protocol implements

(a) Message read and leakage

(b) Message insertion

(c) Message deletion

(d) Message alteration

(e) Message reordering

Fig. 2: Threats in the current pub/sub model. We consider
both a passive adversary and an active adversary on a broker.

CBC security semantics in-between publishers and subscribers
while giving the least privilege to a broker. Figure 3 shows the
protocol, including the MQTLS handshake protocol as well as
the MQTLS record protocol.

A. Client-to-broker-to-client (CBC) Security Semantics

Unlike a standard TLS scenario that includes only two parties,
we consider three participants in communications; thus, we
need to answer the following question:

What is the “end-to-end security” with a broker?

Answering the question, we consider communication between
one publisher and one subscriber via a broker for brevity.
Client-to-broker. We can think “end-to-end” security between
a client (i.e., a publisher or a subscriber) and a broker, which
is the end-to-end security model that is generally applied in
current practice (cf. Figure 1). No network attacker can see or
modify messages between a client and a broker with a TLS

session, but a broker can still completely monitor payloads
as well as topics in the messages. Note that the broker has
excessive privilege since a broker does not need to read a
payload to perform its functionality.
Client-to-client. On the other hand, let assume there is an “end-
to-end” security session between a publisher and a subscriber.
In this case, MQTT messages are delivered over a TLS session.
Therefore, both a topic and a payload are encrypted between the
publisher and the subscriber. Although a broker in the middle
cannot perform any threats mentioned before, the broker cannot
read a topic; thus, it cannot deliver any messages to a subscriber.

As can be seen above, it is difficult to define “end-to-end”
with either of the above. Therefore, we propose a new notion
of “end-to-end” security for the pub/sub model, called client-
to-broker-to-client (CBC) security.
Client-to-broker-to-client. In this security model, we focus
on the fact that a broker can perform its role without reading
a payload. Hence, we apply the notion of end-to-end security
differently for a topic and a payload. A topic should be
protected between a client and a broker, while a payload should
be encrypted between a publisher and a subscriber.

B. Overview of MQTLS

We propose MQTLS that implements CBC security seman-
tics in MQTT. MQTLS is designed based on the following
security goals to make CBC security semantics feasible.

• Entity Authentication (G1): Clients should be able to
authenticate a broker as well as a peer client on subscribing
to a topic (to confirm and to authorize each other).

• Payload confidentiality and integrity (G2): Confiden-
tiality and integrity should be guaranteed between clients.

Together with the above security goals, we further consider
the followings as well.

• Minimal networking overhead (G3): A new protocol
should not increase the number of round trips in executing
the protocol.

• Minimal impact on applications (G4): Revisions on
applications to deploy a new protocol should be minimal.

Before explaining the MQTLS handshake protocol and the
MQTLS record protocol in detail, we specify essential factors
used in the protocol below:

• Payload encryption key (): A payload encryption
key is used to encrypt a payload. The key is generated
by a publisher at the initial state and should be delivered
to all the subscribers who want to subscribe to the topic.

• Payload sequence number: A payload sequence number
is used to count the number of messages sent by a
publisher. Each PUBLISH message includes a unique
payload sequence number.

• Topic encryption key (,): A topic encryption
key is used to encrypt a topic (and also an encrypted
payload and a payload sequence number); thus, the key
is established between a client and a broker.

• One-time delivery key (): A one-time delivery key
is uniquely established per a pair of a publisher and a

Fig. 3: The MQTLS Protocol. During MQTLS handshake protocol, each of a publisher and a subscriber establishes a topic
encryption key with a broker while the publisher and the subscriber share a one-time encryption key and a payload sequence
number. By using the payload encryption key with the payload sequence number, the publisher can send sensitive messages
securely to the subscriber without revealing the messages to the broker.

subscriber. The key is used to encrypt/deliver a payload
encryption key with a payload sequence number.

C. The MQTLS Handshake Protocol

The objectives of the MQTLS handshake protocol is to
establish a topic encryption key as well as as a one-time
delivery key and to deliver a payload encryption key and a
payload sequence number encrypted with the one-time delivery
key while authenticating a broker as well as the peer client. The
MQTLS handshake protocol is executed differently depending
on the role of the client; thus, we describe the protocol below,
separated by the role in chronological order.
Subscriber behavior (S-➀ – S-➃). A subscriber who would
subscribe to the topic first generates an ephemeral Diffie-
Hellman (DH) keypair (say, (a, ga)) to establish a one-time
delivery key with a publisher (S-➀). Then, the subscriber sends
ClientHello (S-➁) with an MQTLS extension constant (to
negotiate the use of MQTLS with a broker and a subscriber)
and a message mSubi

1 that includes his interested topic (topic),
a DH public key (ga), a signature over topic∥ga, and a
subscriber’s certificate. Then, the broker inserts mSubi into

1i is an index to represent multiple subscribers

its message queue and responds with ServerHello (S-➂)
including the MQTLS extension constant. The subsequent
handshake messages, such as Certificate that contains a
broker’s certificate, are the same as those in the standard TLS
protocol [7], [14] and the TLS session between the subscriber
and the broker is finally established. The resulting session key is
used as a topic encryption key. Now, the subscriber subscribes
to the topic with the MQTT control messages followed (S-➃).

Publisher behavior (P-➀ – P-➅). Initially, a publisher
creates a topic with a new payload encryption key and a
payload sequence number initialized with 0. Whenever the
publisher wants to send a message to a broker, the publisher
executes the MQTLS handshake protocol with the broker.
Initially, the publisher generates an ephemeral DH keypair
(say, b, gb) (P-➀) and sends ClientHello with the MQTLS
extension constant and her topic (topic) (P-➁). Next, the
broker responds with a series of mSubi that relates to the
topic from its message queue (P-➂). Let n denote the number
of mSubi received. A publisher authenticates n subscribers by
verifying each signature in mSubi and finally generates each
one-time delivery key from mSubi by running a HMAC-based
Extract-and-expand Key Derivation Function (HKDF) [10]

over gab with a label, “encryption key” (P-➃). The subsequent
handshake messages, such as Certificate that contains a
broker’s certificate, follow the standard protocol and finally
a topic encryption key is established between the broker
and the publisher (P-➄). A publisher then generates mPubi

(as a response to mSubi) that contains a hash value of the
subscriber’s DH public key (H(ga)), her DH public key (gb),
a payload sequence number and a payload encryption key
encrypted with an one-time delivery key, a signature over
H(ga)∥gb∥payload_sequence∥payload_encryption_key,
and her certificate (CertPub) (P-➅).
Subscriber behavior (S-➄ – S-➅). The broker forwards
mPubi to the subscriber i before a PUBLISH message. On
receiving mPubi , the subscriber generates a one-time delivery
key (S-➄) and finally gets a payload sequence number and a
payload encryption key (S-➅).

D. The MQTLS Record Protocol

The MQTLS record protocol is responsible for encrypt-
ing/decrypting a topic and a payload in a PUBLISH mes-
sage complying CBC security semantics. Whenever a
publisher wants to send a message, the publisher first
prepends a payload with a payload sequence number
(payload_sequence_number∥payload), encrypts the resulting
message by an authenticated encryption (AE) algorithm (e.g.,
AES-GCM) with a payload encryption key, and sends it
encrypted with a topic encryption key (P-➆). A broker that
receives the message decrypts it with a topic encryption key
between a publisher and a broker, checks the topic in the
message, and finally forwards the message to all the associated
subscribers with the message encrypted with topic encryption
keys established between the broker and the subscribers (S-➆).
The receiving subscribers first decrypt the message and then
check whether the payload sequence number is right.

Note that a publisher needs to deliver a payload encryption
key to a subscriber only once. In other words, if the payload
encryption key is delivered to all the subscriber and there is
no new subscriber added between two consecutive PUBLISH
messages, only P-➁, P-➂, P-➄, and P-➆ are executed.

During the MQTLS handshake protocol, a client authenticate
a peer (by ClientHello and ServerHello) and a broker (by
Certificate); thus, entity authentication (G1) is achieved.
Since all the published messages are encrypted by an authen-
ticated encryption algorithm with a key that a broker does
not know, confidentiality and integrity of the messages are
guaranteed (G2). Furthermore, we only utilize the existing
message flights in TLS and MQTT protocol without any
additional round trips (G3). The application should notify
the MQTLS layer of its topic and role; thus, revision on
the application is required for MQTLS. However, we believe
it is minimal since we can implement our MQTLS with
Mosquitto [1] only adding four line-of-codes in clients and no
line-of-codes in a broker (G4).

V. SECURITY ANALYSIS

In this section, we show how the MQTLS protocol addresses
the problems discussed in §III.
Message read and leakage (Figure 2a): A broker cannot
read and leak messages. It is natural since all the payloads are
encrypted with a payload encryption key of which a broker is
not aware. Thus, clients, i.e., publishers and subscribers, need
not worry about information leakages.
Message insertion (Figure 2b): A broker cannot insert a
message, impersonating a related publisher. It is because the
broker does not know the payload encryption key; thus, the
broker cannot make encrypted payload.
Message deletion (Figure 2c): A broker can delete an
arbitrary message by just discarding or not responding to the
message. However, subscribers would know that integrity is
broken when they receive the message next to the discarded
message since the payload sequence number is mismatched.
Message alteration (Figure 2d): Although a broker can
tamper with a message, a subscriber can detect the misbehavior.
It is because a payload is secret with authenticated encryption;
thus, the MAC value is mismatched if the broker has modified
the message.
Message reordering (Figure 2e): Like the message deletion
and the message alteration, a broker can reorder the messages
but a subscriber quickly detects it. The subscriber can simply
check the reordered messages by using the payload sequence
numbers inside the messages.

VI. EVALUATION

With addressing the security problems discussed in §V, we
evaluate the performance overhead of MQTLS regarding time
delay and CPU overhead, focusing on publishing messages at
a publisher-side. We also see how the performance overhead
increased with regard to the number of subscribers.
Implementation. We implement MQTLS by using OpenSSL-
1.0.2o and combine it with Eclipse Mosquitto [1], an open-
source MQTT broker and clients. Note that we do not need to
revise a broker application, while we only add 4 line-of-codes
to client applications. It is to indicate a topic and its role (i.e., a
publisher or a subscriber) to the MQTLS layer. The ciphersuite
used for our evaluation is ECDHE-ECDSA-AES-128-GCM-
SHA256. Furthermore, we generate DH keypairs over a NIST
P-256 elliptic curve, use AES-128-GCM for payload encryption,
and utilize SHA-256 for the hash algorithm.
Testbed. We build our testbed comprised of two publishers, a
broker, and subscribers. We use a laptop with Intel i7 Core at
2.90GHz with 8GB RAM for a high-end publisher, a Raspberry
Pi 3B+ with ARM core A53 at 1.4GHz with 1GB RAM for a
low-end publisher, a PC with Intel i5 Core at 3.30GHz with
16GB RAM for a broker, and a AWS instance with Intel Xeon
at 2.5GHz with 1GB RAM for a subscriber.
Delay time and CPU processing overhead (Figure 4). We
first evaluate the time required to send a PUBLISH message
from a publisher (P-➀ to P-➄) as well as the CPU processing
time. The result shows that the overhead is increased 6.58%
(20.67ms) at the high-end publisher and 99.88% (106.57ms)

(a) Delay time (b) CPU processing time

Fig. 4: Delay time and CPU processing overhead. The result
shows that the overhead is mainly due to computation.

Fig. 5: Delay time with regard to the number of subscribers.
The delay time is increased before a payload encryption key
is delivered due to the number of asymmetric signatures is
increased. However, after the key is delivered, the delay time
becomes steady regardless of the number of subscribers.

at the low-end publisher compared with the standard TLS
(19.38ms at the high-end, 53.59ms at the low-end) before the
payload encryption key is delivered. However, once the payload
encryption key is delivered to a subscriber, the increment due
to MQTLS compared with the standard TLS is decreased
to 4.06% (20.17ms) at the high-end and 10.04% (58.97ms).
Note that the trend of the delay time and the CPU processing
time is similar, meaning that the overhead is mainly due to
computation. The main culprit of the increment is asymmetric
signature generation and verification to establish a one-time
delivery key, which requires heavy computation. This explains
why the low-end device shows further increment.
Delay time with regard to the number of subscribers
(Figure 5). We also measure the delay time with regard
to the number of subscribers at the low-end device. The
result shows that the delay time is increased before a payload
encryption key is delivered due to the number of asymmetric
signature/verification is increased. However, after the key is
delivered, the delay time becomes stable regardless of the
number of subscribers.
Takeaway: we can conclude that the overhead of MQTLS is
concentrated on delivering a payload encryption key. However,
once the key is delivered, MQTLS is performed without a
significant load while achieving security goals discussed earlier.

VII. RELATED WORK

There have been several studies to establish a TLS ses-
sion with multi-parties, including middleboxes, but none
of them is based on the pub/sub model. Multi-context
TLS (mcTLS) [13] applies the least privilege principle to
middleboxes by sharing the MAC keys according to their
permission. For example, read-only middleboxes only get a read

MAC key, while read/write middleboxes possess both a read
MAC key and a write MAC key. We apply a similar concept to
a broker to read only a topic. Middlebox TLS (mbTLS) [12]
combines remote attestation with TLS to securely introduce
middleboxes. Note that mbTLS requires middleboxes run over
trusted execution environment (TEE). Middlebox-aware TLS
(maTLS) [11] proposes auditable middleboxes that possess
middlebox certificates in the transparency log servers. End-
points can be aware of middleboxes by their certificates and
verify their behavior with audit mechanisms.

VIII. CONCLUSION

We propose MQTLS that address threats due to untrusted
brokers in MQTT. The MQTLS protocol implements CBC
security semantics that makes “end-to-end” security feasible
between publishers and subscribers, while restricting a broker
not to access to any sensitive information. Numerical results
show that the performance overhead of MQTLS is large in the
early stages, but after a payload encryption key is distributed,
we see the performance overhead became marginal.

REFERENCES

[1] “Eclipse mosquitto,” https://mosquitto.org, accessed: 2019-07-28.
[2] “Hivemq: Reliable data movement for connected devices,” https://www.

hivemq.com/, accessed: 2019-07-30.
[3] “mosquitto-tls man page,” https://mosquitto.org/man/mosquitto-tls-7.html,

accessed: 2019-07-23.
[4] “Mqtt security fundamentals,” https://www.hivemq.com/mqtt-security-

fundamentals/, accessed: 2019-07-23.
[5] Z. H. Ali, H. A. Ali, and M. M. Badawy, “Internet of things (iot):

definitions, challenges and recent research directions,” International
Journal of Computer Applications, vol. 975, p. 8887, 2015.

[6] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot:
Applications, challenges, and opportunities with china perspective,” IEEE
Internet of Things journal, vol. 1, no. 4, pp. 349–359, 2014.

[7] T. Dierks, “The Transport Layer Security (TLS) protocol version 1.2,”
IETF, RFC 5246, 2008.

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[9] HiveMQ, “Bmw mobility services,” https://www.hivemq.com/case-
studies/bmw-mobility-services/, accessed: 2019-07-30.

[10] H. Krawczyk and P. Eronen, “Hmac-based extract-and-expand key
derivation function (hkdf),” https://tools.ietf.org/html/rfc5869, 2010,
accessed: 2019-07-28.

[11] H. Lee, Z. Smith, J. Lim, G. Choi, S. Chun, T. Chung, and T. T.
Kwon, “maTLS: How to make TLS middlebox-aware?” in Network
and Distributed System Security Symposium (NDSS), San Diego, USA,
February 2019.

[12] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste,
“And then there were more: Secure communication for more than two
parties,” in Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies. ACM, 2017, pp. 88–100.

[13] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R.
López, K. Papagiannaki, P. R. Rodriguez, and P. Steenkiste, “Multi-
context tls (mctls): Enabling secure in-network functionality in tls,” in
SIGCOMM Computer Communication Review. ACM, 2015.

[14] E. Rescorla, “The Transport Layer Security (TLS) protocol version 1.3,”
IETF, RFC 8446, 2018.

[15] O. Standard, “Mqtt version 3.1. 1,” http://docs.oasis-open.org/mqtt/mqtt/
v3, 2014, accessed: 2019-07-28.

[16] R. Wadhwa, A. Mehra, P. Singh, and M. Singh, “A pub/sub based
architecture to support public healthcare data exchange,” in 2015 7th
International Conference on Communication Systems and Networks
(COMSNETS). IEEE, 2015.

[17] L. Zhang, “Building facebook messenger,” https://www.
facebook.com/notes/facebook-engineering/building-facebook-
messenger/10150259350998920/, accessed: 2019-07-30.

https://mosquitto.org
https://www.hivemq.com/
https://www.hivemq.com/
https://mosquitto.org/man/mosquitto-tls-7.html
https://www.hivemq.com/mqtt-security-fundamentals/
https://www.hivemq.com/mqtt-security-fundamentals/
https://www.hivemq.com/case-studies/bmw-mobility-services/
https://www.hivemq.com/case-studies/bmw-mobility-services/
https://tools.ietf.org/html/rfc5869
http://docs.oasis-open.org/mqtt/mqtt/v3
http://docs.oasis-open.org/mqtt/mqtt/v3
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920/
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920/
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920/

	Introduction
	Background
	Message Queueing Telemetry Transport (MQTT)
	Transport Layer Security

	Problem Scope
	The mqTLS protocol
	Client-to-broker-to-client (cbc) Security Semantics
	Overview of mqTLS
	The mqTLS Handshake Protocol
	The mqTLS Record Protocol

	Security Analysis
	Evaluation
	Related Work
	Conclusion
	References

