
Proactive SDN-based Load Balancing for Datacenter Network
Minhyeok Kang, Hyunwoo Lee, Junghwan Song, Ted “Taekyoung” Kwon

Seoul National University
{mhkang,hwlee2014,jhsong}@mmlab.snu.ac.kr,tkkwon@snu.ac.kr

ABSTRACT
Most datacenter networks use ECMP that utilizes static hashing of
flows to distribute network traffic to avoid congestion. However,
it turned out that ECMP cannot achieve ideal distribution; thus,
network congestion is still an important issue in datacenter net-
works. Recent proposals for load balancing reactively address the
problem; thus, they incurs performance delay. Furthermore, they
have deployment issues.

We propose a proactive SDN-based load balancing scheme that
can proactively avoid congestion using the knowledge of the net-
work state and that can be easily deployable. We evaluate our
scheme on a Mininet emulator, which shows that our scheme
achieves 2 times shorter flow completion time than ECMP in the
emulation environment and shows more even traffic distribution.
We are currently applying our scheme to the 100Gbps ethernet
testbed to show its feasibility in the real world.

CCS CONCEPTS
• Networks→ Data center networks.

KEYWORDS
load balancing, software defined networking
ACM Reference Format:
Minhyeok Kang, Hyunwoo Lee, Junghwan Song, Ted “Taekyoung” Kwon.
2019. Proactive SDN-based Load Balancing for Datacenter Network. In
Proceedings of CFI 2019. ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/1234567890

1 INTRODUCTION
Datacenter networks must provide large bisection bandwidth to
support an ever-increasing diverse set of workloads, ranging from
latency-sensitive tiny flows to throughput-sensitive elephant flows.
A Clos topology (a.k.a., a fat-tree topology) with the the Equal-Cost
Multi-Path (ECMP) load balancing scheme is known to provide large
bisection bandwidth [1, 2]; thus, it is widely deployed in datacenter
networks. ECMP, however, provides uneven load distribution due
to hash collisions leading to poor performance [2].

There have been several load balancing schemes [2, 3, 6] to
address the limitation of ECMP. However, they require delay time
due to their reactive behavior or have deployment challenges. For
example, Hedra [2] re-routes flows after a congestion is discovered
in the network. Although it reduces the impact of the congestion,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CFI 2019, August 7 - 9, 2019, Phuket, Thailand
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/1234567890

it requires some delay time such as calculating a new path on
congestion. On the other hand, MPTCP [6] is challenging to deploy
since they require changes of kernel network stack. CONGA [3]
requires replacing every network switch with specialized one that
implements a new load-balancing algorithm.

We present a proactive and easy-to-deployable load balancing
scheme based on Software Defined Networking (SDN). Our scheme
proactively distributes traffic loads as evenly as possible to avoid
congestion and, thus, maximizes overall link utilization to support
large bisection bandwidth. Also, our scheme can be easily employed
with any OpenFlow-enabled switches that are widely deployed
in the current datacenter networks. We implement our solution
with the Ryu SDN framework [4], emulate it with the Mininet
emulator and conduct experiments in the 100Gbps ethernet testbed.
Emulation result shows our load balancing scheme is feasible while
showing better performance than ECMP and testbed result shows
our scheme can achieve more even traffic distribution than ECMP.

2 PROACTIVE LOAD BALANCINGWITH SDN
2.1 Design Goals
We consider the following properties to design our solution.

• Proactivity It is desirable to avoid a congestion proactively
since the cost to address the congestion reactively is expen-
sive.

• Deployability The solution should be easily deployed. It is
irrelevant to require replacing any network commodities or
modifying the kernel stack.

To achieve the above goals, we leverage a software defined net-
working (SDN) with our distribution algorithm. The SDN controller
can get information about network traffic, e.g., TX/RX bytes on
each switch port, from switches via OpenFlow channels. Based on
the information, we can proactively detect possible congestions and
decide good routes for flows. Note that use of SDN technology in
data centers is growing [5], which makes our scheme immediately
deployable in practice.

2.2 SDN Controller Behavior
Our SDN controller consists of the two basic components, namely
Monitor and Balancer. Monitor keeps track of the status of the
overall network by periodically querying information about incom-
ing and outgoing traffic bytes to all the switches in the network.
Balancer selects a good path for each new flow based on the net-
work status. We describe the behavior of each component in the
following.
Monitor. Monitor periodically, say 1 second, queries information
about link loads including TX/RX bytes on switch ports to all the
switches. Monitor updates the status of the network according to
the reports from the switches and calculates link loads by:

https://doi.org/10.1145/1234567890
https://doi.org/10.1145/1234567890
https://doi.org/10.1145/1234567890

CFI 2019, August 7 - 9, 2019, Phuket, Thailand Minhyeok Kang, Hyunwoo Lee, Junghwan Song, Ted “Taekyoung” Kwon

Figure 1: The network topology used for our evalution is
shown. We build a Clos topology that consists of 4 spine
switches and 2 leaf switches.

(TX bytes in the current period)−(TX bytes in the last period)
(Capacity of the switchport)

Balancer. Balancer distributes the traffic by assigning the path
per each flow. The procedure of Balancer is as follows:

(1) A switch sends a request to Balancer when it receives a
packet of a new flow generated by an end-node.

(2) Then, Balancer checks the current link loads of possible
paths for the requested flow to find the link with minimum
load.

(3) Balancer responds with the egress port corresponding to the
link found in the previous step to the switch.

(4) The switch adds an entry for the flow into the flow table.

3 EVALUATION
We evaluate our scheme by emulation. Figure 1 shows the network
topology used in our evaluation. We use 2-tier Clos topology that
consists of four spine switches and two leaf switches, while all the
switches are attached to the SDN controller. Four machines are
connected to each leaf switch, respectively; thus, each machine has
four paths toward a machine in another rack. We use the Ryu SDN
framework [4] to implement the SDN controller and the polling
period is set to 1 second.

We use Mininet emulator in which all the links have 1Gbps
bandwidth. We generate four flows from a machine in a leaf switch
to a machine in another leaf switch and measure flow completion
times (FCTs) for each flow. The total volume of traffic sent by each
sender is 1GB.

Our emulation result is shown in Figure 2. Note that our scheme
only requires 49.20% of FCTs, compared with ECMP. In ECMP,
there happened lots of hash collisions; thus, two or three flows may
share the same path, which incurs congestion. On the other hand,
each flow utilizes its own path without sharing with others, which
accounts for our result.

4 FUTUREWORK
We are applying our scheme to the 100Gbps-ethernet testbed. Our
initial result is shown in Figure 3. In this experiment, we generate
two 10GB flows from the source to the destination. We find that the

Figure 2: The emulation result shows our scheme only re-
quires 49.20% of FCTs compared with ECMP.

Figure 3: The testbed based result shows our scheme
achieves more balanced distribution than ECMP.

distribution of FCT of our scheme is more evenly distributed than
that of ECMP. Though the average FCT of our scheme (3.39s) is
slightly slower than that of ECMP (3.13s), the standard deviation of
FCTs of our scheme is 17.7% smaller than that of ECMP. We believe
that the per-flow overhead of Balancer causes the performance
degradation shown in the experiments, but we’re still figuring out
the exact cause and leave it as future work.

REFERENCES
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,

commodity data center network architecture. In SIGCOMM. ACM.
[2] MohammadAl-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,

Amin Vahdat, et al. 2010. Hedera: dynamic flow scheduling for data center net-
works.. In NSDI.

[3] MohammadAlizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan,
Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra Yadav, George
Varghese, et al. 2014. CONGA: Distributed congestion-aware load balancing for
datacenters. In SIGCOMM. ACM.

[4] Ryu SDN Framework Community. [n. d.]. Ryu SDN Framework. Retrieved "June
29, 2019 from "https://osrg.github.io/ryu/"

[5] Lightwave Staff. [n. d.]. IHS Markit: Data Center and enterprise LAN
SDN market totaled $4.4 Billion in 2017. Retrieved "June 29,
2019" from "https://techblog.comsoc.org/2018/06/11/ihs-markit-data-center-and-
enterprise-lan-sdn-market-totaled-4-4-billion-in-2017/"

[6] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. 2011. De-
sign, Implementation and Evaluation of Congestion Control for Multipath TCP..
In NSDI.

"https://osrg.github.io/ryu/"
"https://techblog.comsoc.org/2018/06/11/ihs-markit-data-center-and-enterprise-lan-sdn-market-totaled-4-4-billion-in-2017/"
"https://techblog.comsoc.org/2018/06/11/ihs-markit-data-center-and-enterprise-lan-sdn-market-totaled-4-4-billion-in-2017/"

	Abstract
	1 Introduction
	2 Proactive Load Balancing with SDN
	2.1 Design Goals
	2.2 SDN Controller Behavior

	3 Evaluation
	4 Future Work
	References

