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ABSTRACT 
Application fngerprinting is a useful data analysis technique for 
network administrators, marketing agencies, and security analysts. 
For example, an administrator can adopt application fngerprint-
ing techniques to determine whether a user’s network access is 
allowed. Several mobile application fngerprinting techniques (e.g., 
FlowPrint, AppScanner, and ET-BERT) were recently introduced 
to identify applications using the characteristics of network traf-
fc. However, we fnd that the performance of the existing mobile 
application fngerprinting systems signifcantly degrades when a 
virtual private network (VPN) is used. To address such a short-
coming, we propose a framework dubbed AppSniffer that uses a 
two-stage classifcation process for mobile app fngerprinting. In 
the frst stage, we distinguish VPN trafc from normal trafc; in the 
second stage, we use the optimal model for each trafc type. Specif-
ically, we propose a stacked ensemble model using Light Gradient 
Boosting Machine (LightGBM) and a FastAI library-based neural 
network model to identify applications’ trafc when a VPN is used. 
To show the feasibility of AppSniffer, we evaluate the detection 
accuracy of AppSniffer for 150 popularly used Android apps. Our 
experimental results show that AppSniffer efectively identifes 
mobile applications over VPNs with F1-scores between 84.66% and 
95.49% across four diferent VPN protocols. In contrast, the best 
state-of-the-art method (i.e., AppScanner) demonstrates signif-
cantly lower F1-scores between 25.63% and 47.56% in the same 
settings. Overall, when normal trafc and VPN trafc are mixed, 
AppSniffer achieves an F1-score of 90.63%, which is signifcantly 
better than AppScanner that shows an F1-score of 70.36%. 

CCS CONCEPTS 
• Security and privacy → Mobile and wireless security; • In-
formation systems → Trafc analysis; • Computing method-

ologies → Artifcial intelligence. 
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1 INTRODUCTION 
With the growing number of mobile devices, mobile applications 
(hereinafter referred to as apps) contribute to over half of the global 
web trafc [1]. More than 6.5 billion people are using their hands-
on devices [9]. Therefore, it becomes a commonplace to use own 
mobile devices within enterprise networks [22], indicating that 
techniques and tools are necessary for managing network trafc 
generated from mobile apps. 

Mobile app fngerprinting is one of the building blocks for man-
aging and securing networks [46]. It is used to identify mobile apps 
based on trafc they generate, such as network addresses or ap-
plication data. For security purposes, Internet Service Providers 
(ISPs) or enterprise network administrators can use this technique 
to identify specifc apps and allow/block their network accesses 
according to the network’s policies. To this end, there have been 
several studies [27, 43] to identify apps with high accuracy by 
fngerprinting based on application data (e.g., HTTP headers). How-
ever, such approaches are unusable as Transport Layer Security 
(TLS) [42] becomes widespread [30]; thus, it is challenging to iden-
tify mobile apps over encrypted trafc. To address the challenge, 
three types of mobile app fngerprinting techniques have been 
proposed, difering with respect to the information they use for 
generating fngerprints. Techniques of the frst type, referred to 
as plaintext metadata-based techniques [8, 35, 45, 47], generate 
fngerprints based on plaintext metadata, such as certifcates or IP 
addresses. Techniques of the second type, referred to as network-
ing pattern-based techniques [37, 41, 46, 51], make fngerprints 
based on networking patterns like inter-arrival time between pack-
ets. Techniques of the third type, referred to as raw packet-based 
techniques [31–33], create fngerprints based on raw packets. 

However, a signifcant drawback of those techniques is that their 
accuracy performance notably degrades when a virtual private net-
work (VPN) is used, as we have experimentally verifed (results are 
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shown later in the paper). Since VPN protocols usually append an 
additional header and a message authentication code to packets, 
network patterns over a VPN are quite diferent from an app’s net-
work patterns when no VPN is used, making apps hard to detect. 
Consequently, malware can use a VPN to evade detection by fnger-
printing systems that rely on network addresses and trafc patterns, 
thus adding another evasion mechanism to the ones already in use 
by malware [32, 46, 47]. 

In this paper, we present AppSniffer, a framework aimed at 
identifying blacklisted or suspicious apps, instead of blocking all 
VPN trafc. This approach is taken to avoid any negative impact 
on usability, such as the inability to use voice services like WiFi 
calling, which rely on VPNs. AppSniffer is designed to identify 
mobile apps, regardless of whether they are running with or with-
out a VPN connection. AppSniffer uses a two-stage approach for 
app identifcation. In the frst stage, it diferentiates VPN trafc 
from normal trafc by using a simple but efective classifer based 
on the number of fows in the trafc. In the second stage, App-
Sniffer identifes the specifc mobile apps from VPN trafc and 
normal trafc, based on the optimal model for each trafc type. 
We use FlowPrint [47] for normal trafc because it produces the 
best F1-score results. However, we develop a novel classifer, called 
ScanVPN, for VPN trafc because there is no efective model to 
identify mobile apps over VPNs. A sequence of packet lengths is 
the key feature for identifying mobile apps over a VPN because 
packet sizes do not dynamically change in most mobile apps, even 
when a VPN is used. To improve the performance of the mobile 
app fngerprinting, we build a stacked ensemble model with two 
machine learning models, namely Light Gradient Boosting Machine 
(LightGBM) [24] and a FastAI [20] library-based neural network. 
With ScanVPN, AppSniffer introduces a specifc classifer per 
known VPN protocol (e.g., OpenVPN over TCP or WireGuard over 
UDP) trained on the corresponding VPN trafc. Then, for given 
VPN trafc, AppSniffer infers the VPN protocol, e.g., by inspecting 
the headers, used for the trafc and sends it to the corresponding 
classifer. Finally, the classifer identify mobile apps from the trafc. 
Note that we also provide an automated script to generate VPN traf-
fc to train a classifer of known VPN protocol to make AppSniffer 
easily deployable. 

Our key contributions are summarized as follows: 

• We review the state-of-the-art mobile app fngerprinting 
techniques [32, 46, 47] over VPNs and analyze the root causes 
of the inefectiveness of those techniques in identifying mo-
bile apps over VPNs. 

• We propose a framework dubbed AppSniffer to identify 
mobile apps regardless of whether a VPN is used as the 
underlying network. Also, we develop a novel classifcation 
model for app recognition over VPNs. 

• To show feasibility of the framework, we collect network 
trafc from 150 popularly used Android apps with an auto-
mated script and implement AppSniffer. 

• We conduct a comprehensive experiment on the systems and 
show that AppSniffer achieves F1-score of 90.63%, signif-
cantly better than the state-of-the-art methods when normal 
trafc and VPN trafc are mixed. 

We release our dataset and source code in the public repository; 
they are available at https://github.com/network-traffc/AppSnif 
fer. 

2 BACKGROUND 
This section presents background information on VPN protocols 
and mobile app fngerprinting techniques. 

2.1 VPN Protocols 
A VPN technique connects two entities across the Internet as if they 
were connected within a private network, leveraging encrypted 
tunneling schemes. VPN techniques are widely used for various 
reasons. For example, one may use a VPN to protect one’s privacy 
or circumvent censorship. One can also establish a VPN with a com-
pany gateway to access the enterprise network from outside. VPN 
networks are also established between smartphones and mobile 
networks when users get call services [29]. 

A VPN protocol specifes 1) how to establish encrypted tunnels 
and 2) how to exchange data over the tunnels. Two parties, a VPN 
client and a VPN server, are involved in the protocol. A VPN client 
selects a VPN server and initiates the protocol to establish an en-
crypted tunnel with the VPN server. After the tunnel is established, 
to send packets to a public server (e.g., Google), the VPN client just 
needs to encrypt the packets, including application data as well 
as TCP/IP headers, and encapsulate the encrypted packets with 
the tunnel headers. The tunnel headers contain information about 
the encrypted packets (e.g., length), the VPN server’s IP address, 
and port number. Finally, the VPN client sends the encapsulated 
packets to the VPN server. The VPN server frst decapsulates the 
tunnel headers from the packets, decrypts the resulting packets, 
and forwards the decrypted packets to the public server. 

In what follows, we frst describe the PPTP VPN protocol [19] and 
then describe three widely used VPN protocols, namely IKEv2 [23]/ 
IPsec [26], WireGuard [11], and OpenVPN. 
PPTP-based VPN protocol. PPTP is a protocol to establish a 
tunnel that carries point-to-point protocol (PPP) [44] packets. In 
PPTP, an IP tunnel is established by using the GRE tunneling proto-
col [14], and the PPP packets are exchanged over the tunnel. As the 
GRE tunnel does not provide any security service, the Microsoft 
Point-To-Point Encryption (MPPE) protocol [39] is executed to ne-
gotiate the use of the RC4 encryption algorithm with a session key. 
SuperVPN1 is a representative example using PPTP. 
IKEv2/IPsec-based VPN protocol. In this type of VPN protocol, 
a tunnel is established after running the IKEv2 protocol [23] that re-
lies on the Dife-Hellman (DH) key exchange to establish a session 
key. Then, the Encapsulated Security Payload (ESP) protocol [25] 
is used to encrypt packets and assure their integrity with the Hash-
based Message Authentication Code (HMAC). Note that ESP is over 
UDP. TurboVPN2 is one of the solutions using IKEv2/IPsec. 
OpenVPN protocol. In OpenVPN, a VPN client and its VPN server 
establish a session key using the TLS handshake protocol. The 
key is used to encrypt/decrypt raw IP packets in the data channel 
where both TCP and UDP can be used for its transport layer. In 
other words, the data channel is established as either TCP or UDP. 
Surfshark3 is a representative example using OpenVPN. 
WireGuard protocol. In WireGuard [11], a VPN client and its 
VPN server perform the elliptic curve-based DH key exchange to 
establish a session key. A session key is used to encrypt packets 
with an authenticated encryption scheme. Then, encrypted packets 
are sent over UDP. NordVPN4 uses WireGuard. 
1http://www.supervpn.net 
2https://turbovpn.com 
3https://surfshark.com 
4https://nordvpn.com 
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Table 1: Performance of ET-BERT before and after excluding TSval and TSecr (in TCP option feld) from the datasets in [32]. 

Dataset 
Precision 

ET-BERT (fow) 
Recall F1-score Accuracy 

ET-BERT (fow) w/o TSval and TSecr 
Precision Recall F1-score Accuracy 

Cross-Platform (iOS) [47] 
Cross-Platform (Android) [47] 

0.9882 
0.9920 

0.9898 0.9885 
0.9913 0.9910 

0.9898 
0.9913 

0.9117 0.9069 0.9055 0.9069 
0.7340 0.7666 0.7180 0.7666 

ISCX-VPN-Service [12] 
ISCX-VPN-App [12] 

0.8538 
0.7655 

0.8418 0.8463 
0.7754 0.7637 

0.8418 
0.7754 

0.8402 0.8356 0.8365 0.8356 
0.7316 0.6890 0.6840 0.6890 

ISCX-Tor [28] 0.8552 0.8656 0.8555 0.8656 0.8552 0.8656 0.8555 0.8656 
USTC-TFC [49] 0.9755 0.9803 0.9774 0.9803 0.9566 0.9633 0.9593 0.9633 

Takeaway. We should note that once a VPN is used, VPN trafc 
is diferent from original trafc because the structure of packets is 
changed, especially in the following two aspects. First, the transport 
layer protocol might be changed. As most of the VPN protocols 
use UDP for its transport layer protocol, TCP/IP packets change to 
UDP/IP packets. Second, packet lengths increase. This is because 
the VPN protocols always prepend/append headers/trailers for each 
packet. For instance, if there is a 80 byte packet (40 byte for TCP/IP 
headers and the other for application data), the encapsulated packet 
for data would be 112 bytes (PPTP) and 140 bytes (WireGuard), 
respectively without optional felds and paddings. 

2.2 Mobile App Fingerprinting Techniques 
Depending on the features that fngerprinting techniques use, there 
are three types of techniques as follows: 
Plaintext metadata-based techniques. These systems [8, 35, 
45, 47] extract plaintext metadata (e.g., header felds of network 
packets) from network trafc and transform them into a form of a 
fngerprint. For example, FlowPrint [47] generates a fngerprint 
of a mobile app based on a cluster of destination IP addresses with 
which each mobile app communicates. The rationale of the ap-
proach is that each app communicates with a limited number of 
destination servers, and this pattern can properly represent the app 
itself. FlowPrint examines a set of destination IP addresses that a 
target mobile app communicates with and compares the set with 
known mobile apps’ fngerprints to fnd the one where the highest 
number of destination IP addresses overlap. 
Networking pattern-based techniques. The systems in this cat-
egory [37, 41, 46, 51] extract networking patterns from the trafc 
and build a fngerprint based on them. Examples of features used 
for a fngerprint are the inter-arrival time between packets and 
packet lengths. For instance, AppScanner [46], a representative of 
networking pattern-based systems, makes a fngerprint of a mobile 
app based on a sequence of lengths of packets that the app gener-
ates. A classifer is generated based on fngerprints extracted from a 
training dataset and is used to identify a mobile app over the trafc. 
Raw packet-based techniques. This type of systems [31–33] use 
raw packets generated by a mobile app as a fngerprint. For example, 
ET-BERT [32], a state-of-the-art system showing a high accuracy, 
extracts raw payload bytes from each packet and performs pre-
training and fne-tuning of the BERT model based on the payload 
data. Surprisingly, ET-BERT shows that statistically meaningful 
patterns exist in both encrypted and plaintext payloads that allow 
one to identify mobile apps. 

3 LIMITATIONS OF FLOW-BASED MOBILE 
FINGERPRINTING SYSTEMS AGAINST VPN 

In this section, we discuss the limitation of each category of mobile 
fngerprinting systems when we consider an attacker that uses a 
VPN on its device to communicate with other parties. 

Plaintext metadata-based techniques. The systems in this cate-
gory would be inefective in identifying mobile apps over a VPN 
because the plaintext features of trafc are changed when using 
the VPN. For instance, a fngerprint generated by FlowPrint [47] 
for the attacker’s trafc would form a cluster of VPN server IP ad-
dresses instead of the original servers’ IP addresses; thus, it would 
not match any known fngerprints computed without VPNs. Our 
experiments show that the F1-score of FlowPrint, trained only 
with normal trafc, is 0% when dealing with a fngerprint of an 
attacker because FlowPrint does not know the VPN server IP 
addresses (see Section 5.4). 
Networking pattern-based techniques. Even though the net-
working patterns can be captured from VPN trafc, they might 
signifcantly difer from the patterns extracted from normal trafc 
because using a VPN can afect networking patterns (e.g., increased 
packet length or fragmentation) by encapsulating network packets. 
Consequently, the systems become inefcient when they attempt 
to identify mobile apps based on the patterns extracted from an 
attacker’s trafc. We show that AppScanner [46] achieves an F1-
score of 0% due to the VPN (see Section 5.4). 
Raw packet-based techniques. Once an attacker uses a VPN 
tunnel, the form of packets over a VPN tunnel changes from the 
form of the original packets. For instance, TCP/IP packets can be 
changed to UDP/IP packets if the attacker selects the option of 
using a UDP tunnel to send the packets. This change can signif-
icantly afect the performance of the fngerprinting systems. For 
instance, we show that ET-BERT [32] fails to identify mobile apps 
when each app communicates in a VPN tunnel; ET-BERT achieves 
an F1-score of nearly 0% (see Section 5.4). We used a feature im-
portance analysis on the Cross-Platform datasets [47] to analyze 
the reasons for ET-BERT’s performance degradation for VPN trafc 
(see Appendix A). We found that Timestamp Value (TSval) and 
Timestamp Echo Reply (TSecr) [21] in the TCP option felds are 
the most important features that may afect the performance of 
mobile app fngerprinting. That is, ET-BERT’s performance can sig-
nifcantly degrade when we exclude those felds (see Table 1). For 
example, in the Cross-Platform (Android) dataset [47], an F1-score 
of 0.9910 was reduced to 0.7180. Therefore, ET-BERT would fail to 
work on packets over a UDP tunnel because those optional felds 
are not used in such situations. 

4 OVERVIEW OF APPSNIFFER 
To address the limitation of the existing mobile app fngerprinting 
systems against VPN, we propose a framework dubbed AppSnif-
fer to identify mobile apps based on network trafc regardless of 
whether they are being encapsulated over VPNs or not. In what fol-
lows, we frst introduce our threat model and provide an overview 
of AppSniffer. Then, we present in detail each component of 
it. 
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Figure 1: AppSniffer framework overview. 

4.1 Threat Model 
In our work, we use the same threat model used in previous mobile 
app fngerprinting studies [41, 47]. We assume that an app fnger-
printing system is located at the edge of a network that the system 
aims to protect. The system can trace back trafc in its network 
but cannot inspect the trafc in other networks. In addition, we 
assume that the system can identify a mobile device that produces 
network trafc through MAC addresses or mobile device identifca-
tion techniques [6, 40]. Lastly, we focus on a single app fngerprint. 
In other words, we assume that only packets from one mobile app 
are passed through the network at a given time. 

The goal of an attacker in the protected network is to secretly 
communicate with its server by hiding the identity of the app 
that the attacker uses from mobile app fngerprinting systems. To 
achieve this goal, we assume that the attacker can only leverage 
network-level solutions such as VPN or a proxy but cannot directly 
manipulate the app trafc, which would be expensive. 

4.2 High Level Description of AppSniffer 
Our framework, AppSniffer, aims to precisely identify mobile 
apps when a VPN or a proxy is used to hide their identities. That 
is, AppSniffer recognizes apps with a high accuracy using their 
network trafc regardless of whether it is being sent over a VPN or 
not. Hereinafter, if the trafc is sent over a VPN, we call the trafc 
VPN trafc; otherwise, we call it normal trafc. 

The main challenge is how to recognize mobile apps from VPN 
trafc. We observe that when a mobile app runs over a VPN, the 
trafc the app generates is quite diferent from that the app gen-
erates in a normal scenario. Therefore, a mobile app running over 
a VPN should be considered independently of the original app in 
a normal scenario. To address this issue, one may suggest using a 
multi-class classifer that identifes each mobile app with respect to 
given trafc. However, we surmise that such an approach would not 
work since patterns of VPN trafc depend not only on the network-
ing patterns of the mobile apps but also on the VPN protocol in use 
(e.g., OpenVPN over TCP and WireGuard over UDP). Therefore, we 
do not combine the trafc of all diferent VPN protocols for a single 
classifcation model. Instead, we build the optimized classifcation 
model for each VPN protocol individually. 

Figure 1 shows the design of AppSniffer consisting of two 
stages. For AppSniffer, we need to build � + 1 classifers where 
one is for normal trafc and the other � classifers are for � known 
VPN protocols, respectively. In the frst stage, AppSniffer classifes 

whether some given trafc is VPN trafc or not. Then, in the second 
stage, AppSniffer frst identifes the VPN protocol in use to select 
the optimal classifcation model for that protocol. When one of � 
known VPN protocols is used, AppSniffer can accurately identify 
the VPN protocol in use because of the packet header and VPN 
servers’ IP addresses. Finally, AppSniffer identifes mobile apps 
using the optimal classifcation model for the protocol in use. The 
rationale behind this two-stage approach is to consider underlying 
VPN protocols that can signifcantly afect network trafc patterns 
of mobile apps in developing classifers while getting benefts from 
existing approaches on normal trafc. Therefore, we introduce three 
components in AppSniffer, namely: 1) VPN trafc classifer used 
in the frst stage, 2) � diferent app classifers for VPN trafc and 3) 
app classifer for normal trafc used in the second stage. 

In the second stage, AppSniffer cannot identify which VPN 
protocol is specifcally used when an unknown VPN protocol is 
used. In such situations, AppSniffer only labels the given trafc 
as unknown VPN trafc but cannot provide the app’s identity in 
detail. 

4.3 Components of AppSniffer in Detail 
Below we describe the three classifers in detail. 
VPN trafc classifer. The main purpose of the VPN trafc clas-
sifer is to determine whether some given trafc is VPN trafc or 
not. Our approach for this task is to focus on the number of fows 
generated by a mobile app, where a fow is defned as a fve-tuple 
indicating the protocol in use, source/destination IP addresses, and 
source/destination ports. Mobile apps generally communicate with 
various destination servers (e.g., CDN servers and ad servers). How-
ever, if an attacker runs mobile apps over a VPN, the mobile trafc, 
encapsulated with the same IP addresses and ports, results in a 
single fow. Therefore, we develop a VPN trafc classifer that la-
bels some given trafc into VPN trafc if the trafc contains only 
one fow; otherwise, the classifer labels it as normal trafc. We 
verify the feasibility of our approach by counting the number of 
fows from VPN trafc and normal trafc generated by a mobile 
app. Our analysis of 150 apps shows that all the VPN trafc consists 
of one fow, while the normal trafc has 33.53 fows on average (the 
minimum is 2 and the maximum is 353). 
App classifers for VPN trafc (�� �� ). These classifers aim to 
recognize a mobile app over VPN trafc. Designing such classifers 
requires addressing the following three challenges. First, we should 
decide how to prepare a training dataset for each classifer. Second, 
we should consider which features to use for identifying mobile 
apps. Finally, we should determine how to select a good algorithm 
with appropriate hyper-parameters for each classifer. 

Our approach to identifying mobile apps over VPNs is to build 
the optimal classifer for each VPN protocol so that the classifer can 
label given trafc with the corresponding mobile app. A challenge of 
this approach is the lack of public datasets of VPN trafc generated 
by mobile apps. Therefore, we implement a script to collect VPN 
trafc from mobile apps in a scalable manner. 

Based on the dataset, we select a sequence of packet lengths in 
the communication fows as the main feature. We also consider 
the direction of a packet by prepending ‘+’ or ‘-’ to each length 
in the sequence. For example, consider a VPN client that sends 
a 100-byte packet to a VPN server that responds with a 200-byte 
packet. We describe the sequence of packet lengths as (+100, −200). 
We refer to the Adjusted Mutual Information (AMI) analysis [47], 
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where a packet length is one of the highest-scored features. Other 
features in the top 10 ones are source/destination IP addresses and 
the averaged time interval between fows. However, we found those 
features inappropriate for our task because VPN server IP addresses 
are used instead of the original servers’ IP addresses, and the fows 
are combined. To consider the context of a mobile app, we focus 
on a sequence of packets, not a single packet, for fngerprinting. 

To select an appropriate model for our task, we use AutoGloun [13], 
the state-of-the-art Automated Machine Learning tool that automat-
ically fnds the best model with optimal hyper-parameters based 
on a given dataset. It searches a best-ft classifer from 8 types of 
models5 and ensemble models. In ensembling, AutoGluon also sup-
ports bagging and multi-layer stacking. Finally, for VPN trafc, we 
develop the app classifer dubbed ScanVPN, which consists of a 
stacked ensemble model using Light Gradient Boosting Machine 
(LightGBM) and a FastAI library-based neural network. 
App classifer for normal trafc (������� ). After passing through 
the VPN trafc classifer, normal trafc is fed to the app classifer 
for normal trafc. As existing mobile app fngerprinting systems 
(e.g., FlowPrint [47] or AppScanner [46]) show high accuracy, 
we leverage the best existing system for this component. 

5 EXPERIMENTS 
This section describes how we prepare the datasets used in our 
experiment and how we choose training and testing datasets to 
show the limitations of existing mobile app fngerprinting systems 
and evaluate the performance of AppSniffer compared with other 
systems. 

5.1 Dataset 
For our experiments, we generate a dataset of VPN and normal 
trafc from 100 mobile apps selected from the top-200 Android 
apps listed on the Google Play Store in the US6 (details can be 
found in Appendix B). The apps are chosen when they generate 
enough fows to be identifed by the state-of-the-art app fngerprint-
ing systems (i.e., FlowPrint and AppScanner). Each of the 100 
selected apps is run 50 times, with the trafc generated recorded 
in each trial, each lasting 20 seconds, as determined by our pre-
liminary study (see Section 5.2). To increase the diversity of the 
dataset, we also collected additional 50 samples of 20-second-long 
trafc per app, generated by simulating user interactions using 
Monkey 7. 

We collect VPN trafc from mobile apps running four VPN clients 
– SuperVPN, TurboVPN, NordVPN, and Surfshark – that execute 
diferent VPN protocols. We select the VPN clients based on the 
number of downloads in Google Play Store. Information about 
the four VPN clients is given in Table 2. We summarize our VPN 
datasets with statistics on the number of packets in each VPN fow 
in Table 3. We observe that for a unit of time, the fows in the 
TurboVPN dataset have the highest number of packets, and those 
on the Surfshark dataset have the least number of packets. We 
surmise that diference in the transport layer might be a reason 
since UDP communications are typically faster than TCP [7]. 

5Random Forest, XGBoost, CatBoost, kNN, Logistic Regression, Light Gradient Boost-
ing Machine (LightGBM), ExtraTrees, and Tabular Neural Network
6We select mobile apps from the list in accordance with Google’s app ranking system 
on 21-December-2021 
7https://developer.android.com/studio/test/other-testing-tools/monkey 

Table 2: Selected VPN apps. 

VPN Provider Name Version # Download VPN Type 
SuperVPN 2.7.2 > 100 million Free Provider 
TurboVPN 3.7.4.2 > 100 million Paid Provider 
NordVPN 5.11.5 > 50 million Paid Provider 
Surfshark 2.8.1.8 > 50 million Paid Provider 

Table 3: Number of packets in each VPN fow. 

Dataset Transport Mean (Std) Median Min Max 
SuperVPN UDP 3412.36 (5990.19) 1469 28 57203 
TurboVPN UDP 4219.88 (9341.60) 1345 24 65758 
NordVPN UDP 2703.10 (4516.52) 1072 40 51355 
Surfshark TCP 1641.93 (3666.92) 442 38 35393 

5.2 Experiment Setup 

Time series cross-validation. To assess the performance of Flow-
Print, AppScanner, and ET-BERT on VPN trafc and normal trafc, 
we frst split samples of each app into fve folds to perform cross-
validation in time series. Our purpose is to see how the performance 
of a system changes as the size of training samples increases. Fi-
nally, we prepare three diferent scenarios called CV1, CV2, and 
CV3 (see Figure 2). 

Figure 2: Five-fold time series cross-validation. 
For metrics, we use four typical metrics (precision, recall, F1-

score, and accuracy) to evaluate the performance of FlowPrint, 
AppScanner, and ET-BERT. Micro-average is used [18], which 
calculates the proportion-weighted mean value of each metric for 
the individual apps (see Equation 1) to handle imbalanced sizes of 
multiple classes. 

���������� −��� = �0 · ����������0 + · · · + �� · ����������� (1) 

Optimal execution time for app recognition. To collect apps’ 
trafc, we face the challenge of determining the appropriate amount 
of time for the execution time as it may afect the performance of 
the systems. Therefore, we conduct experiments to fnd the optimal 
execution time when the performance of the systems becomes 
stable. To this end, we evaluate FlowPrint and AppScanner with 
respect to the F1-score of recognizing app, varying the execution 
time to 5, 10, 15, 20, 25, and 30 seconds respectively, which we 
report the results in Table 4. We fnd that the performance of the 
systems becomes stable after 20 seconds. Therefore, we decide to 
use 20 seconds for the execution time per sample. 

Table 4: Summary of tested execution time optimization. 

Execution Time 
FlowPrint 
F1-score 

AppScanner 
F1-score 

5 sec 0.9642 0.7372 
10 sec 0.9874 0.7385 
15 sec 0.9826 0.7314 
20 sec 0.9712 0.7953 
25 sec 0.9651 0.7884 
30 sec 0.9626 0.7805 

https://7https://developer.android.com/studio/test/other-testing-tools/monkey
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Table 5: Comparison results of classifers for normal trafc. NN stands for neural network, RF for Random Forest. 

Dataset 
LightGBM + FastAI NN + RF + CatBoost 
Precision Recall F1-score Accuracy Precision 

FlowPrint 
Recall F1-score Accuracy Precision 

AppScanner 
Recall F1-score Accuracy Precision 

ET-BERT 
Recall F1-score Accuracy 

Normal 
CV1 
CV2 
CV3 

0.8426 0.8310 0.8348 0.8310 
0.8706 0.8584 0.8630 0.8584 
0.8796 0.8675 0.8719 0.8675 

0.9815 
0.9878 
0.9822 

0.9756 0.9756 
0.9839 0.9843 
0.9754 0.9767 

0.9756 
0.9839 
0.9754 

0.9832 
0.9844 
0.9884 

0.5317 0.6707 
0.6198 0.7462 
0.6566 0.7766 

0.5317 
0.6198 
0.6566 

0.2205 
0.5659 
0.5413 

0.1888 0.1637 
0.4442 0.4657 
0.4497 0.4692 

0.1888 
0.4442 
0.4497 

Data pre-processing. We perform pre-processing in two aspects. 
First, we remove background trafc (e.g., Dynamic Host Confgura-
tion Protocol (DHCP), Address Resolution Protocol (ARP)) that is 
not specifc to apps after collecting the samples. Second, we mask 
values in some felds (e.g., timestamp) that can be specifcally deter-
mined in experimental settings. We found that ET-BERT achieved 
high accuracy relying on Timestamp Value (TSval) and Timestamp 
Echo Reply (TSecr) [21] in the TCP option felds. However, such 
high accuracy is mainly due to the similar timestamps in the train-
ing and testing sets, which would be unacceptable in real-world 
environments. Other than TSval and TSecr, we also mask the Se-
curity Parameter Index (SPI) feld in the header of Encapsulating 
Security Payload (ESP) in the TurboVPN (i.e., IPsec-based VPN pro-
tocol) dataset. SPI is an index to search for the specifc security 
association (SA) that contains information about encryption algo-
rithms and keys. The SPI value is randomly generated whenever 
the VPN tunnel is established. However, in some cases, the same 
SPI value is repeatedly used across diferent samples, which should 
not happen in practice. Therefore, we conclude that SPI is not an 
appropriate feature; thus, we also mask all the SPI values. 
Experiment environment. For model training, we use a GPU 
server that consists of a Tesla V100-PCIe with 34GB memory and 
an Intel Xeon(R) E5-2687w v3 @3.10 GHz with 264GB RAM. We 
use a Google Pixel 4 phone for our experiments. 

5.3 Implementation 

Dataset generation script We implement a script for generating 
the VPN trafc for desired apps in an automated way. The script is 
written in Python 3 using bash shell commands. It works as follows: 
with Android Debug Bridge (ADB) 8, the script automatically in-
stalls, executes, and uninstalls apps. During the app execution, with 
tshark 9 (the terminal version of Wireshark 10), the script captures 
the app trafc, while the mobile device is connected to the Internet. 
VPN trafc classifer We implement the classifer using Python 
3 with the tshark package to parse characteristics of fows from 
trafc fles (i.e., Pcap fles). 
App classifer for VPN trafc We implement the classifer using 
Python 3 with AutoGluon 11 packages. For model selection, our 
strategy is to fnd the best model and optimize it to improve the 
F1-score. We also set up a ftting time of modeling as 10 minutes 
since the model ftting with unlimited time setup takes too much 
time, but the performance is not much higher than that of models 
with our ftting time. 

5.4 Evaluation 
In this section, we evaluate the performance of AppSniffer in 
mobile app identifcation with regard to VPN trafc and normal 
trafc. Our experimental results are shown in Table 5, Table 6, and 
Table 7 where the best results are highlighted in bold. 
8https://developer.android.com/studio/command-line/adb 
9https://tshark.dev
10https://www.wireshark.org 
11https://auto.gluon.ai 

Optimization of AppSnifer. As AppSniffer allows using exist-
ing techniques for the app classifer for normal trafc (�� ����� ), 
we experiment to understand the impact of diferent types of clas-
sifers on the performance of AppSniffer. As classifers, we use 
FlowPrint, AppScanner, and ET-BERT. In addition to them, we 
also build our own model using AutoGloun [13], which is gener-
ated as a stacked ensemble model consisting of LightGBM, a FastAI 
library-based neural network, Random Forest (RF), and CatBoost, 
which is similar to ScanVPN but trained on normal trafc. Note that 
ScanVPN was originally designed for identifying apps over VPNs 
where each app generates only one fow unless the VPN server 
is changed. Therefore, the fow can represent the corresponding 
app. However, in a normal scenario, each app generates several 
fows during execution. Therefore, we should choose a representa-
tive fow to identify the corresponding app. Our selection is a fow 
containing the maximum number of packets among the fows the 
app generates. Then, we use a sequence of packet lengths of the 
representative fow to build our model for normal trafc. 

Table 5 shows that FlowPrint is the best in that it achieves the 
highest F1-score of 97.67% compared to the others (12.02% higher 
than the second), indicating that a set of destination IP addresses 
is a highly useful feature for identifying the apps for non-VPN 
trafc. Finally, we select FlowPrint for the app classifer for normal 
trafc (������� ). Note that the model built by AutoGloun shows 
the second-best performance, indicating that a sequence of packet 
lengths in the longest fow (i.e., the fow in which the most number 
of packets are included) can also be a useful feature for identifying 
mobile apps. 

On the other hand, for the app classifer for VPN trafc (�� �� ), 
we evaluate ScanVPN and the existing app fngerprinting systems. 
Here, the models are all trained based on VPN trafc. For the ex-
periment, we slightly modify the source code of AppScanner to 
make it work on UDP trafc because it originally focuses on HTTPS 
(TCP). Table 6 shows that ScanVPN is the best (F1-score between 
84.66% to 95.49%) compared to others. Finally, we select ScanVPN 
for the app classifer for VPN trafc (�� �� ) component. 

We note two observations on AppScanner as follows. First, we 
observe that AppScanner demonstrates high precision between 
80.77% and 97.36% and low recall between 16.40% and 33.32%, 
demonstrating that there are many false negative cases. In other 
words, it fails to detect many malicious apps, which would be in-
appropriate for a security application. Second, although AppScan-
ner and ScanVPN use a similar feature (i.e., a sequence of packet 
lengths), the gap between the performance of ScanVPN (F1-score 
between 84.66% and 95.49%) and that of AppScanner (F1-score 
between 25.63% and 47.56%) is signifcantly large. 

We also observe FlowPrint’s critical limitation for VPN trafc. 
FlowPrint cannot identify apps on VPN trafc (F1-score between 
0.56% and 3.41%). Note that FlowPrint identifes apps based on 
their destination IP addresses. In our experiment, FlowPrint only 
refers to the VPN servers’ IP addresses; thus, it fails to identify apps 
with insufcient information. In other words, FlowPrint cannot 
distinguish two diferent apps that use the same VPN server as 

https://11https://auto.gluon.ai
https://10https://www.wireshark.org
https://8https://developer.android.com/studio/command-line/adb
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Table 6: Comparison results of classifers for VPN trafc. 

Dataset 
Precision 

ScanVPN 
Recall F1-score Accuracy Precision 

FlowPrint 
Recall F1-score Accuracy Precision 

AppScanner 
Recall F1-score Accuracy Precision 

ET-BERT 
Recall F1-score Accuracy 

SuperVPN 
CV1 
CV2 
CV3 

0.8383 
0.9088 
0.9342 

0.8233 0.8166 
0.9013 0.8992 
0.9273 0.9252 

0.8233 
0.9013 
0.9273 

0.0236 
0.0204 
0.0172 

0.0467 0.0202 
0.0480 0.0203 
0.0473 0.0193 

0.0467 
0.0480 
0.0473 

0.8394 
0.9810 
0.9736 

0.1657 0.2600 
0.2793 0.4127 
0.3332 0.4756 

0.1657 
0.2793 
0.3332 

0.0000 
0.0000 
0.0002 

0.0067 0.0001 
0.0067 0.0001 
0.0127 0.0004 

0.0067 
0.0067 
0.0127 

TurboVPN 
CV1 
CV2 
CV3 

0.8978 
0.9507 
0.9590 

0.8887 0.8873 
0.9453 0.9450 
0.9553 0.9549 

0.8887 
0.9453 
0.9553 

0.0335 
0.0339 
0.0322 

0.0693 0.0340 
0.0747 0.0344 
0.0707 0.0341 

0.0693 
0.0747 
0.0707 

0.8651 
0.9537 
0.9680 

0.1514 0.2427 
0.2394 0.3655 
0.2787 0.4152 

0.1514 
0.2394 
0.2787 

0.0000 
0.0000 
0.0000 

0.0067 0.0001 
0.0067 0.0001 
0.0067 0.0001 

0.0067 
0.0067 
0.0067 

NordVPN 
CV1 
CV2 
CV3 

0.8518 
0.9009 
0.9397 

0.8367 0.8324 
0.8887 0.8853 
0.9333 0.9331 

0.8367 
0.8887 
0.9333 

0.0024 
0.0029 
0.0032 

0.0280 0.0042 
0.0320 0.0050 
0.0333 0.0056 

0.0280 
0.0320 
0.0333 

0.9421 
0.9668 
0.9655 

0.1504 0.2457 
0.2154 0.3371 
0.2640 0.3998 

0.1504 
0.2154 
0.2640 

0.0000 
0.0000 
0.0000 

0.0067 0.0001 
0.0067 0.0001 
0.0067 0.0001 

0.0067 
0.0067 
0.0067 

Surfshark 
CV1 
CV2 
CV3 

0.6852 
0.7997 
0.8650 

0.6593 0.6510 
0.7760 0.7682 
0.8507 0.8466 

0.6593 
0.7760 
0.8507 

0.0139 
0.0136 
0.0140 

0.0500 0.0151 
0.0507 0.0150 
0.0500 0.0141 

0.0500 
0.0507 
0.0500 

0.5878 
0.7768 
0.8077 

0.1063 0.1680 
0.1399 0.2221 
0.1640 0.2563 

0.1063 
0.1399 
0.1640 

0.0000 
0.0000 
0.0000 

0.0067 0.0001 
0.0067 0.0001 
0.0067 0.0001 

0.0067 
0.0067 
0.0067 

Table 7: Comparison results of overall performance on normal and VPN dataset. 

Dataset 
Precision 

AppSniffer 
Recall F1-score Accuracy Precision 

FlowPrint 
Recall F1-score Accuracy Precision 

AppScanner 
Recall F1-score Accuracy Precision 

ET-BERT 
Recall F1-score Accuracy 

Normal 
& 

All VPNs 

CV1 
CV2 
CV3 

0.8231 
0.8861 
0.9155 

0.8078 0.8044 
0.8739 0.8721 
0.9068 0.9063 

0.8078 
0.8739 
0.9068 

0.2110 
0.2117 
0.2098 

0.2339 0.2098 
0.2379 0.2118 
0.2353 0.2100 

0.2339 
0.2379 
0.2353 

0.9837 
0.9846 
0.9887 

0.4517 0.5951 
0.5331 0.6740 
0.5648 0.7036 

0.4517 
0.5331 
0.5648 

0.4071 
0.4639 
0.4911 

0.3928 0.3968 
0.4529 0.4562 
0.4639 0.4713 

0.3928 
0.4529 
0.4639 

their fngerprints are identical. In the VPN scenario, FlowPrint 
can recognize whether the app trafc is sent from VPN or not, but 
it is not proper for the app classifer for VPN trafc. 

There are two fndings on ET-BERT. First, as the results in Table 6 
show, we observe that ET-BERT is inefective for app identifcation 
for VPN trafc. The F1-scores for ET-BERT on all VPN datasets are 
less than 0.04%. As discussed, ET-BERT highly relies on plaintext 
felds, including TCP option felds, TLS record headers, and plaintext 
metadata in TLS, which requires the transport layer to be TCP. 
However, many VPN protocols use UDP as their transport layer; 
thus, the F1-score of ET-BERT decreases compared to that of TCP 
trafc. Second, due to the limited size (a maximum sequence length 
of 512 tokens by default [10]) of the input sequence for the BERT 
model, it is difcult for ET-BERT to use all the raw packets to build 
its model. We fnd that in the ET-BERT implementation, a feature 
vector is generated by concatenating raw packets until the number 
of tokens is enough for model training. The default value of the 
number of packets to be parsed is fve, which means that the frst 
fve packets of a given fow are used to construct a feature vector. 
Because of it, in some fows, there are cases where only packets of 
TCP or TLS handshakes are captured for a feature vector, making 
ET-BERT depend on the plaintext metadata (e.g., a server name 
in TLS Client Hello) in the normal scenario. However, ET-BERT 
cannot learn these features in the VPN dataset. Therefore, ET-BERT 
is inappropriate for the app recognition for VPN trafc because of 
lack of information. For example, as we can see from the results on 
SuperVPN and NordVPN, ET-BERT completely failed to identify the 
app trafc (F1-score of 0.04% and 0.01% on SuperVPN and NordVPN). 
When it comes to TurboVPN and Surfshark, the dominant features 
are SPI in IPsec ESP, TSval, and TSecr in the TCP option feld. We 
fnd that without them (i.e., applying to mask), the performance of 
ET-BERT signifcantly decreases. Moreover, when the dataset size 
is insufcient to train the patterns, the performance of ET-BERT 
decreases close to the F1-score of 0%. That is, a large training dataset 
size is required for fne-tuning compared to other systems. 
Overall performance of AppSniffer. In this experiment, we 
compare the overall performance of AppSniffer with those of the 
existing app fngerprinting systems against the mixed trafc with 
VPN trafc and normal trafc. The objective of this experiment is 
to see whether the systems are practical as they may face mixed 
trafc in general. Our result reports that AppSniffer shows the 

best performance (90.63% of F1-score) among the evaluated systems 
(see Table 7). 

In addition, we also experimented to see the performance of the 
systems when they were trained on normal trafc and tested on 
VPN trafc to show the limitation of the existing app fngerprinting 
systems. The result shows that all the existing systems cannot 
properly recognize the VPN trafc. The F1-scores of FlowPrint 
and AppScanner are 0%, and that of ET-BERT is less than 0.52% 
(see Table 8), demonstrating that it is necessary to consider the 
VPN trafc for training. 

Table 8: Performance of ET-BERT on VPN trafc dataset 
when ET-BERT is trained only with normal trafc. 

ET-BERT (trained only with normal trafc) 
Dataset 

Precision Recall F1-score Accuracy 
SuperVPN 0.0081 0.0080 0.0052 0.0080 
TurboVPN 0.0039 0.0093 0.0035 0.0093 
NordVPN 0.0033 0.0080 0.0037 0.0080 
Surfshark 0.0062 0.0087 0.0051 0.0087 

Optimal feature size for the app classifer. For ScanVPN, we 
select the feature size (i.e., the number of packets in a sequence) 
as the average number of packets in each fow based on a train-
ing dataset. For example, based on a training dataset in CV3, 3,410, 
4,213, 2,670, and 1,643 are selected as the feature sizes on SuperVPN, 
TurboVPN, NordVPN, and Surfshark, respectively. To optimize the 
classifer, we also conduct an experiment to see the performance of 
ScanVPN varying the feature size used in a sequence in the perfor-
mance of ScanVPN, ranging from 500 to 10,000 (see Figure 3). The 
experiment is done on CV3, and the metric used is F1-score. Over-
all, ScanVPN’s performance improves as the feature size increases, 
even though there are some fuctuations. Based on these results, 
we suggest that the feature size should be larger than 1,250. 

6 DISCUSSION AND LIMITATIONS 

Adaptive attacks. A limitation of our framework is that it would 
be vulnerable to adaptive attacks. For example, an attacker can 
generate the app trafc with a proxy (e.g., Obfs4 proxy [3]) that can 
change a sequence of packet lengths in a fow. That is, using a proxy, 
the attacker can append padding bytes with zero to all the packets 
to make them equal to the maximum transmission unit. Such an 
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Figure 3: Performance of ScanVPN with the feature size. 

active obfuscation scheme may make difcult for AppSniffer to 
fnd signifcant patterns from trafc. Furthermore, we do not design 
AppSniffer to be robust against adversarial example attacks [5, 38]. 
As a countermeasure, we can introduce an adversarial example 
detection system [15, 36] in the frst stage of AppSniffer and block 
the attack trafc. As another countermeasure, we can generate and 
train adversarial trafc for adversarial learning [34]. 
Generating valid datasets. Based on the feature importance anal-
ysis, we fnd that some raw packet-based systems highly rely on 
the features in a specifc scenario, which makes it difcult to de-
ploy the system in the real world. For instance, we fnd that the 
dominant features of one system are TCP option felds which are 
not generally used. Further, some TCP felds are timestamps when 
the dataset is collected, and the values are similar in both the train-
ing set and the testing set (only the last byte of the timestamps 
are diferent), which results in high accuracy. However, in the real 
world, we cannot expect that there exist such similar values in the 
felds. Therefore, we suggest masking some feld values (e.g., TSval 
and TSecr in the TCP option felds) in the datasets that cannot be 
refected in real-world situations. 
Limitation against unknown VPNs Our current AppSniffer 
implementation cannot identify apps over VPNs unknown to App-
Sniffer. In this case, AppSniffer can only label the given trafc 
as unknown VPN trafc. For future research, we plan to explore 
additional features and develop more advanced classifers for iden-
tifying apps when an unseen VPN protocol is used. 
Limitation against multiple active apps AppSniffer is designed 
as a single-label classifer, in line with previous works such as 
[32, 46, 47], under the same assumptions. However, in practical 
settings, multiple apps may be running simultaneously, making 
it difcult to diferentiate packets related to a specifc app since 
they are merged in a single VPN fow. To address this issue, we 
have enhanced AppSniffer by dividing the VPN fow into smaller 
segments based on packet inter-arrival times and classifying each 
segment individually. We conducted a pilot study to evaluate the 
feasibility of this approach. We randomly selected two apps from a 
pool of 10 popular Android apps and ran them simultaneously over 
TurboVPN 50 times. Trafc data for both apps was collected for 30 
seconds. Our preliminary results demonstrate that AppSniffer was 
able to identify both apps with an accuracy of 10%, and either of 
the apps with a 58% accuracy. In the future, we plan to develop a 

more general multi-label model to handle scenarios where multiple 
apps are running concurrently. 

7 RELATED WORK 

Mobile App Fingerprinting Mobile trafc has increased dramati-
cally in recent years as mobile devices and apps have grown tremen-
dously. In the meantime, mobile app fngerprinting is getting much 
attention. AppPrint [37] makes fngerprints of mobile apps based 
on statistics of tokens such as HTTP header strings or query charac-
ters contained in HTTP packets. However, this approach is difcult 
to use in practice when packets are encrypted; AppPrint cannot 
read content of the encrypted packets. To address such a challenge, 
Taylor et al. [46] proposed AppScanner that classifes HTTPS traf-
fc with networking patterns instead of content in HTTP headers. 
AppScanner uses 54 statistical features from the collected packets 
and builds models based on a support vector machine and Random 
Forest models. Some frameworks [41, 47] have been proposed to use 
characteristics of mobile trafc according to user behavior. Using a 
semi-supervised learning approach, FlowPrint [47] uses the desti-
nation IP addresses/port numbers, timestamps, packet sizes, and 
TLS certifcate to identify mobile apps. MAppGraph [41] constructs 
a communication graph containing a node with the destination IP 
address and port as a tuple and an edge-weighted communication 
correlation. This approach uses deep graph convolution neural net-
works. Lin et al. [32] proposed a system dubbed ET-BERT that takes 
a pre-trained BERT model based on raw trafc and fne-tunes it on 
encrypted trafc. However, as discussed, all of the above approaches 
are inefective in identifying apps running over VPNs. 
VPN Detection There have been several previous approaches to 
detect VPN trafc. Gao et al. [17] searches the best VPN trafc 
classifers among Naive Bayesian, Logistic Regression, Support 
Vector Machine, XGBoost, and Random Forest algorithms based on 
deep packet inspection, sample entropy fngerprint, and a sequence 
of payload lengths, respectively. Similarly, Bagui et al. [4] also 
uses machine learning algorithms based on time-related features 
to distinguish VPN trafc from normal trafc. Other approaches 
learn features from raw trafc or detected VPN trafc using LSTM 
models [16, 48]. Xue et al. [50] propose an approach for OpenVPN 
fngerprinting based on byte patterns, packet lengths, and responses 
from the VPN server. These approaches, however, only focus on 
detecting VPN trafc but do not aim to identify mobile apps over 
VPNs. 

8 CONCLUSION 
In this paper, we discuss the limitation of the existing mobile app 
fngerprint systems against an attacker that uses VPN protocols to 
hide its malicious activities. We propose AppSniffer, a framework 
able to recognize app trafc over both VPN trafc and normal trafc. 
Our numerical results show that AppSniffer is efective with a 
high F1-score of 90.63%. 

There are three directions for future work. First, we plan to 
extend AppSniffer to prevent adaptive or adversarial attacks. For 
instance, we may consider obfuscation. Second, we will strengthen 
AppSniffer to identify apps over unknown VPNs. Third, we will 
extend AppSniffer to identify simultaneously active apps. 
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A FEATURE IMPORTANCE SCORES OF 
ET-BERT 

We used a permutation-based feature importance measure [2] to an-
alyze the relative importance of individual features. Table 9 provides 
the importance scores computed for 10 most important features 
of ET-BERT on the Cross-Platform datasets [47]. In both Cross-
Platform (iOS) and Cross-Platform (Android) datasets, Timestamp 
Value (TSval) and Timestamp Echo Reply (TSecr) [21] in the TCP 
option felds are commonly important. 

B LIST OF MOBILE APPS 
We provide a list of mobile apps selected in our experiments (see 
Table 10). 

Table 9: 10 most important features of ET-BERT on the Cross-Platform datasets [47]. 

Cross-Platform (iOS) 
Feature Score p-value 

Timestamp value (TCP Option) in the frst packet 
Timestamp echo reply (TCP Option) in the frst packet 

Timestamp echo reply (TCP Option) in the fourth packet 
TCP payload in the third packet 

Timestamp value (TCP Option) in the third packet 
Timestamp value (TCP Option) in the frst packet 

Timestamp value (TCP Option) in the second packet 
TCP payload in the third packet 

Public Key (TLS Client Key Exchange) in the fourth packet 
Server name (TLS Client Hello) in the frst packet 

0.0046 
0.0011 
0.0008 
0.0007 
0.0007 
0.0006 
0.0006 
0.0005 
0.0005 
0.0005 

0.0156 
0.1267 
0.0516 
0.0947 
0.0726 
0.3336 
0.3131 
0.2113 
0.0995 
0.0995 

Cross-Platform (Android) 
Feature Score p-value 

Timestamp value (TCP Option) in the frst packet 0.0027 0.0158 
Timestamp echo reply (TCP Option) in the second packet 0.0011 0.0037 

Timestamp value (TCP Option) in the third packet 0.0011 0.0997 
Timestamp echo reply (TCP Option) in the second packet 0.0009 0.0533 

Timestamp value (TCP Option) in the second packet 0.0008 0.2000 
Timestamp value (TCP Option) in the fourth packet 0.0008 0.0801 
Timestamp value (TCP Option) in the ffth packet 0.0008 0.0947 
Timestamp value (TCP Option) in the frst packet 0.0008 0.0959 

Timestamp value (TCP Option) in the fourth packet 0.0006 0.1080 
Timestamp value (TCP Option) in the fourth packet 0.0005 0.2859 
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Table 10: List of Mobile Apps 

No. Package Name Number of Installs No. Package Name Number of Installs 

1 com.facebook.lite > 10 billion 76 com.appswing.qr.barcodescanner.barcodereader > 10 million 
2 com.google.android.apps.translate > 10 billion 77 com.bestbuy.android > 10 million 
3 com.google.android.play.games > 10 billion 78 com.bravo.booster > 10 million 
4 com.instagram.android 

com.snapchat.android 
> 10 billion 
> 10 billion 

79 com.brighthouse.mybhn 
com.cbs.app 

> 10 million 
> 10 million 

6 com.spotify.music > 10 billion 81 com.coinbase.android > 10 million 
7 com.zhiliaoapp.musically > 10 billion 82 com.creditkarma.mobile > 10 million 
8 com.booking > 500 million 83 com.discovery.discoveryplus.mobile > 10 million 
9 com.contextlogic.wish 

com.facebook.mlite 
> 500 million 
> 500 million 

84 com.dominospizza 
com.doordash.driverapp 

> 10 million 
> 10 million 

11 com.google.android.apps.nbu.paisa.user > 500 million 86 com.etsy.android > 10 million 
12 com.picsart.studio > 500 million 87 com.fetchrewards.fetchrewards.hop > 10 million 
13 com.pinterest > 500 million 88 com.fortunescope > 10 million 
14 com.shazam.android 

us.zoom.videomeetings 
> 500 million 
> 500 million 

89 com.google.android.apps.youtube.unplugged 
com.grubhub.android 

> 10 million 
> 10 million 

16 com.agminstruments.drumpadmachine > 100 million 91 com.hopper.mountainview.play > 10 million 
17 com.airbnb.android > 100 million 92 com.instacart.client > 10 million 
18 com.amazon.avod.thirdpartyclient > 100 million 93 com.kohls.mcommerce.opal > 10 million 
19 com.audible.application 

com.callapp.contacts 
> 100 million 
> 100 million 

94 com.konylabs.capitalone 
com.mcdonalds.app 

> 10 million 
> 10 million 

21 com.canva.editor > 100 million 96 com.mercariapp.mercari > 10 million 
22 com.cleanteam.oneboost > 100 million 97 com.microsoft.bing > 10 million 
23 com.digidust.elokence.akinator.freemium > 100 million 98 com.mistplay.mistplay > 10 million 
24 com.discord 

com.disney.disneyplus 
> 100 million 
> 100 million 

99 com.myhomescreen.sms 
com.myklarnamobile 

> 10 million 
> 10 million 

26 com.duolingo > 100 million 101 com.nbcuni.nbc > 10 million 
27 com.ebay.mobile > 100 million 102 com.nextdoor > 10 million 
28 com.gamma.scan > 100 million 103 com.nike.omega > 10 million 
29 com.google.android.apps.adm 

com.google.android.apps.authenticator2 
> 100 million 
> 100 million 

104 com.onedebit.chime 
com.peacocktv.peacockandroid 

> 10 million 
> 10 million 

31 com.google.android.apps.chromecast.app > 100 million 106 com.pinger.textfree > 10 million 
32 com.google.android.apps.youtube.kids > 100 million 107 com.rf.sams.android > 10 million 
33 com.google.earth > 100 million 108 com.ringapp > 10 million 
34 com.gotv.nfgamecenter.us.lite 

com.hbo.hbonow 
> 100 million 
> 100 million 

109 com.shopify.arrive 
com.sirius 

> 10 million 
> 10 million 

36 com.indeed.android.jobsearch > 100 million 111 com.starbucks.mobilecard > 10 million 
37 com.lemon.lvoverseas > 100 million 112 com.tacobell.ordering > 10 million 
38 com.microsoft.teams > 100 million 113 com.ticketmaster.mobile.android.na > 10 million 
39 com.opera.app.news 

com.pandora.android 
> 100 million 
> 100 million 

114 com.tool.fast.smart.cleaner 
com.united.mobile.android 

> 10 million 
> 10 million 

41 com.paypal.android.p2pmobile > 100 million 116 com.wave.livewallpaper > 10 million 
42 com.psafe.msuite > 100 million 117 com.zillow.android.zillowmap > 10 million 
43 com.reddit.frontpage > 100 million 118 me.lyft.android > 10 million 
44 com.soundcloud.android 

com.tinder 
> 100 million 
> 100 million 

119 co.vulcanlabs.rokuremote 
com.afrm.central 

> 5 million 
> 5 million 

46 com.tubitv > 100 million 121 com.afterpaymobile.us > 5 million 
47 com.ubercab.eats > 100 million 122 com.airgoat.goat > 5 million 
48 com.waze > 100 million 123 com.americasbestpics > 5 million 
49 com.weather.Weather 

com.zzkko 
> 100 million 
> 100 million 

124 com.fandango.regal 
com.flemanager.fles.explorer.boost.clean 

> 5 million 
> 5 million 

51 jp.ne.ibis.ibispaintx.app > 100 million 126 com.immediasemi.android.blink > 5 million 
52 net.zedge.android > 100 million 127 com.justplay.app > 5 million 
53 sg.bigo.live > 100 million 128 com.macys.android > 5 million 
54 tv.twitch.android.app 

com.amazon.clouddrive.photos 
> 100 million 
> 50 million 

129 com.meetalbert 
com.nvidia.geforcenow 

> 5 million 
> 5 million 

56 com.amazon.dee.app > 50 million 131 com.oculus.twilight > 5 million 
57 com.apple.android.music > 50 million 132 com.optimizer.pro.beeztel > 5 million 
58 com.azure.authenticator > 50 million 133 com.thunderclap.fakecallfromsantavideocallsammy > 5 million 
59 com.bumble.app 

com.cleanteam.onesecurity 
> 50 million 
> 50 million 

134 com.vrbo.android 
us.current.android 

> 5 million 
> 5 million 

61 com.dd.doordash > 50 million 136 com.blockfolio.blockfolio > 1 million 
62 com.enfick.android.TextNow > 50 million 137 com.cbs.tve > 1 million 
63 com.espn.score_center > 50 million 138 com.engro.cleanerforsns > 1 million 
64 com.hp.printercontrol 

com.hulu.plus 
> 50 million 
> 50 million 

139 com.home.bible.verse.prayer 
com.investvoyager 

> 1 million 
> 1 million 

66 com.microsoft.xboxone.smartglass > 50 million 141 com.love.biremoji > 1 million 
67 com.oferup > 50 million 142 com.pointone.buddyglobal > 1 million 
68 com.particlenews.newsbreak > 50 million 143 com.vod.vodcy > 1 million 
69 com.roku.remote 

com.yelp.android 
> 50 million 
> 50 million 

144 com.weatherport.android 
org.gamatech.androidclient.app 

> 1 million 
> 1 million 

71 clean.phone.cleaner.boost.security.applock > 10 million 146 org.toshi > 1 million 
72 com.aa.android > 10 million 147 com.mwm.beat_looper_pro > 0.5 million 
73 com.adpmobile.android > 10 million 148 com.fnnci.fnnci > 0.1 million 
74 com.ai.face.play 

com.amazon.storm.lightning.client.aosp 
> 10 million 
> 10 million 

149 com.ralphlauren.us.app 
com.wodol.dol 

> 0.1 million 
> 0.1 million 
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