
AppSniffer: Towards Robust Mobile App Fingerprinting Against
VPN

Sanghak Oh Minwook Lee Hyunwoo Lee
Department of Electrical and Department of Electrical and Department of Energy Engineering,

Computer Engineering, Computer Engineering, Korea Institute of Energy Technology
Sungkyunkwan University Sungkyunkwan University (KENTECH)

sanghak@skku.edu mwlee@skku.edu hwlee@kentech.ac.kr

Elisa Bertino Hyoungshick Kim
Department of Computer Science, Department of Electrical and

Purdue University Computer Engineering,
bertino@purdue.edu Sungkyunkwan University

hyoung@skku.edu

ABSTRACT
Application fngerprinting is a useful data analysis technique for
network administrators, marketing agencies, and security analysts.
For example, an administrator can adopt application fngerprint-
ing techniques to determine whether a user’s network access is
allowed. Several mobile application fngerprinting techniques (e.g.,
FlowPrint, AppScanner, and ET-BERT) were recently introduced
to identify applications using the characteristics of network traf-
fc. However, we fnd that the performance of the existing mobile
application fngerprinting systems signifcantly degrades when a
virtual private network (VPN) is used. To address such a short-
coming, we propose a framework dubbed AppSniffer that uses a
two-stage classifcation process for mobile app fngerprinting. In
the frst stage, we distinguish VPN trafc from normal trafc; in the
second stage, we use the optimal model for each trafc type. Specif-
ically, we propose a stacked ensemble model using Light Gradient
Boosting Machine (LightGBM) and a FastAI library-based neural
network model to identify applications’ trafc when a VPN is used.
To show the feasibility of AppSniffer, we evaluate the detection
accuracy of AppSniffer for 150 popularly used Android apps. Our
experimental results show that AppSniffer efectively identifes
mobile applications over VPNs with F1-scores between 84.66% and
95.49% across four diferent VPN protocols. In contrast, the best
state-of-the-art method (i.e., AppScanner) demonstrates signif-
cantly lower F1-scores between 25.63% and 47.56% in the same
settings. Overall, when normal trafc and VPN trafc are mixed,
AppSniffer achieves an F1-score of 90.63%, which is signifcantly
better than AppScanner that shows an F1-score of 70.36%.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; • In-
formation systems → Trafc analysis; • Computing method-

ologies → Artifcial intelligence.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583473

KEYWORDS
App fngerprinting, Trafc analysis, VPN, Mobile app

ACM Reference Format:
Sanghak Oh, Minwook Lee, Hyunwoo Lee, Elisa Bertino, and Hyoungshick
Kim. 2023. AppSniffer: Towards Robust Mobile App Fingerprinting Against
VPN. In Proceedings of the ACM Web Conference 2023 (WWW ’23), April
30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543507.3583473

1 INTRODUCTION
With the growing number of mobile devices, mobile applications
(hereinafter referred to as apps) contribute to over half of the global
web trafc [1]. More than 6.5 billion people are using their hands-
on devices [9]. Therefore, it becomes a commonplace to use own
mobile devices within enterprise networks [22], indicating that
techniques and tools are necessary for managing network trafc
generated from mobile apps.

Mobile app fngerprinting is one of the building blocks for man-
aging and securing networks [46]. It is used to identify mobile apps
based on trafc they generate, such as network addresses or ap-
plication data. For security purposes, Internet Service Providers
(ISPs) or enterprise network administrators can use this technique
to identify specifc apps and allow/block their network accesses
according to the network’s policies. To this end, there have been
several studies [27, 43] to identify apps with high accuracy by
fngerprinting based on application data (e.g., HTTP headers). How-
ever, such approaches are unusable as Transport Layer Security
(TLS) [42] becomes widespread [30]; thus, it is challenging to iden-
tify mobile apps over encrypted trafc. To address the challenge,
three types of mobile app fngerprinting techniques have been
proposed, difering with respect to the information they use for
generating fngerprints. Techniques of the frst type, referred to
as plaintext metadata-based techniques [8, 35, 45, 47], generate
fngerprints based on plaintext metadata, such as certifcates or IP
addresses. Techniques of the second type, referred to as network-
ing pattern-based techniques [37, 41, 46, 51], make fngerprints
based on networking patterns like inter-arrival time between pack-
ets. Techniques of the third type, referred to as raw packet-based
techniques [31–33], create fngerprints based on raw packets.

However, a signifcant drawback of those techniques is that their
accuracy performance notably degrades when a virtual private net-
work (VPN) is used, as we have experimentally verifed (results are

https://doi.org/10.1145/3543507.3583473
https://doi.org/10.1145/3543507.3583473
mailto:hyoung@skku.edu
mailto:permissions@acm.org
mailto:bertino@purdue.edu

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Sanghak Oh, Minwook Lee, Hyunwoo Lee, Elisa Bertino, and Hyoungshick Kim

shown later in the paper). Since VPN protocols usually append an
additional header and a message authentication code to packets,
network patterns over a VPN are quite diferent from an app’s net-
work patterns when no VPN is used, making apps hard to detect.
Consequently, malware can use a VPN to evade detection by fnger-
printing systems that rely on network addresses and trafc patterns,
thus adding another evasion mechanism to the ones already in use
by malware [32, 46, 47].

In this paper, we present AppSniffer, a framework aimed at
identifying blacklisted or suspicious apps, instead of blocking all
VPN trafc. This approach is taken to avoid any negative impact
on usability, such as the inability to use voice services like WiFi
calling, which rely on VPNs. AppSniffer is designed to identify
mobile apps, regardless of whether they are running with or with-
out a VPN connection. AppSniffer uses a two-stage approach for
app identifcation. In the frst stage, it diferentiates VPN trafc
from normal trafc by using a simple but efective classifer based
on the number of fows in the trafc. In the second stage, App-
Sniffer identifes the specifc mobile apps from VPN trafc and
normal trafc, based on the optimal model for each trafc type.
We use FlowPrint [47] for normal trafc because it produces the
best F1-score results. However, we develop a novel classifer, called
ScanVPN, for VPN trafc because there is no efective model to
identify mobile apps over VPNs. A sequence of packet lengths is
the key feature for identifying mobile apps over a VPN because
packet sizes do not dynamically change in most mobile apps, even
when a VPN is used. To improve the performance of the mobile
app fngerprinting, we build a stacked ensemble model with two
machine learning models, namely Light Gradient Boosting Machine
(LightGBM) [24] and a FastAI [20] library-based neural network.
With ScanVPN, AppSniffer introduces a specifc classifer per
known VPN protocol (e.g., OpenVPN over TCP or WireGuard over
UDP) trained on the corresponding VPN trafc. Then, for given
VPN trafc, AppSniffer infers the VPN protocol, e.g., by inspecting
the headers, used for the trafc and sends it to the corresponding
classifer. Finally, the classifer identify mobile apps from the trafc.
Note that we also provide an automated script to generate VPN traf-
fc to train a classifer of known VPN protocol to make AppSniffer
easily deployable.

Our key contributions are summarized as follows:

• We review the state-of-the-art mobile app fngerprinting
techniques [32, 46, 47] over VPNs and analyze the root causes
of the inefectiveness of those techniques in identifying mo-
bile apps over VPNs.

• We propose a framework dubbed AppSniffer to identify
mobile apps regardless of whether a VPN is used as the
underlying network. Also, we develop a novel classifcation
model for app recognition over VPNs.

• To show feasibility of the framework, we collect network
trafc from 150 popularly used Android apps with an auto-
mated script and implement AppSniffer.

• We conduct a comprehensive experiment on the systems and
show that AppSniffer achieves F1-score of 90.63%, signif-
cantly better than the state-of-the-art methods when normal
trafc and VPN trafc are mixed.

We release our dataset and source code in the public repository;
they are available at https://github.com/network-traffc/AppSnif
fer.

2 BACKGROUND
This section presents background information on VPN protocols
and mobile app fngerprinting techniques.

2.1 VPN Protocols
A VPN technique connects two entities across the Internet as if they
were connected within a private network, leveraging encrypted
tunneling schemes. VPN techniques are widely used for various
reasons. For example, one may use a VPN to protect one’s privacy
or circumvent censorship. One can also establish a VPN with a com-
pany gateway to access the enterprise network from outside. VPN
networks are also established between smartphones and mobile
networks when users get call services [29].

A VPN protocol specifes 1) how to establish encrypted tunnels
and 2) how to exchange data over the tunnels. Two parties, a VPN
client and a VPN server, are involved in the protocol. A VPN client
selects a VPN server and initiates the protocol to establish an en-
crypted tunnel with the VPN server. After the tunnel is established,
to send packets to a public server (e.g., Google), the VPN client just
needs to encrypt the packets, including application data as well
as TCP/IP headers, and encapsulate the encrypted packets with
the tunnel headers. The tunnel headers contain information about
the encrypted packets (e.g., length), the VPN server’s IP address,
and port number. Finally, the VPN client sends the encapsulated
packets to the VPN server. The VPN server frst decapsulates the
tunnel headers from the packets, decrypts the resulting packets,
and forwards the decrypted packets to the public server.

In what follows, we frst describe the PPTP VPN protocol [19] and
then describe three widely used VPN protocols, namely IKEv2 [23]/
IPsec [26], WireGuard [11], and OpenVPN.
PPTP-based VPN protocol. PPTP is a protocol to establish a
tunnel that carries point-to-point protocol (PPP) [44] packets. In
PPTP, an IP tunnel is established by using the GRE tunneling proto-
col [14], and the PPP packets are exchanged over the tunnel. As the
GRE tunnel does not provide any security service, the Microsoft
Point-To-Point Encryption (MPPE) protocol [39] is executed to ne-
gotiate the use of the RC4 encryption algorithm with a session key.
SuperVPN1 is a representative example using PPTP.
IKEv2/IPsec-based VPN protocol. In this type of VPN protocol,
a tunnel is established after running the IKEv2 protocol [23] that re-
lies on the Dife-Hellman (DH) key exchange to establish a session
key. Then, the Encapsulated Security Payload (ESP) protocol [25]
is used to encrypt packets and assure their integrity with the Hash-
based Message Authentication Code (HMAC). Note that ESP is over
UDP. TurboVPN2 is one of the solutions using IKEv2/IPsec.
OpenVPN protocol. In OpenVPN, a VPN client and its VPN server
establish a session key using the TLS handshake protocol. The
key is used to encrypt/decrypt raw IP packets in the data channel
where both TCP and UDP can be used for its transport layer. In
other words, the data channel is established as either TCP or UDP.
Surfshark3 is a representative example using OpenVPN.
WireGuard protocol. In WireGuard [11], a VPN client and its
VPN server perform the elliptic curve-based DH key exchange to
establish a session key. A session key is used to encrypt packets
with an authenticated encryption scheme. Then, encrypted packets
are sent over UDP. NordVPN4 uses WireGuard.
1http://www.supervpn.net
2https://turbovpn.com
3https://surfshark.com
4https://nordvpn.com

https://github.com/network-traffic/AppSniffer
https://github.com/network-traffic/AppSniffer
http://www.supervpn.net
https://turbovpn.com
https://surfshark.com
https://nordvpn.com

AppSniffer: Towards Robust Mobile App Fingerprinting Against VPN WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: Performance of ET-BERT before and after excluding TSval and TSecr (in TCP option feld) from the datasets in [32].

Dataset
Precision

ET-BERT (fow)
Recall F1-score Accuracy

ET-BERT (fow) w/o TSval and TSecr
Precision Recall F1-score Accuracy

Cross-Platform (iOS) [47]
Cross-Platform (Android) [47]

0.9882
0.9920

0.9898 0.9885
0.9913 0.9910

0.9898
0.9913

0.9117 0.9069 0.9055 0.9069
0.7340 0.7666 0.7180 0.7666

ISCX-VPN-Service [12]
ISCX-VPN-App [12]

0.8538
0.7655

0.8418 0.8463
0.7754 0.7637

0.8418
0.7754

0.8402 0.8356 0.8365 0.8356
0.7316 0.6890 0.6840 0.6890

ISCX-Tor [28] 0.8552 0.8656 0.8555 0.8656 0.8552 0.8656 0.8555 0.8656
USTC-TFC [49] 0.9755 0.9803 0.9774 0.9803 0.9566 0.9633 0.9593 0.9633

Takeaway. We should note that once a VPN is used, VPN trafc
is diferent from original trafc because the structure of packets is
changed, especially in the following two aspects. First, the transport
layer protocol might be changed. As most of the VPN protocols
use UDP for its transport layer protocol, TCP/IP packets change to
UDP/IP packets. Second, packet lengths increase. This is because
the VPN protocols always prepend/append headers/trailers for each
packet. For instance, if there is a 80 byte packet (40 byte for TCP/IP
headers and the other for application data), the encapsulated packet
for data would be 112 bytes (PPTP) and 140 bytes (WireGuard),
respectively without optional felds and paddings.

2.2 Mobile App Fingerprinting Techniques
Depending on the features that fngerprinting techniques use, there
are three types of techniques as follows:
Plaintext metadata-based techniques. These systems [8, 35,
45, 47] extract plaintext metadata (e.g., header felds of network
packets) from network trafc and transform them into a form of a
fngerprint. For example, FlowPrint [47] generates a fngerprint
of a mobile app based on a cluster of destination IP addresses with
which each mobile app communicates. The rationale of the ap-
proach is that each app communicates with a limited number of
destination servers, and this pattern can properly represent the app
itself. FlowPrint examines a set of destination IP addresses that a
target mobile app communicates with and compares the set with
known mobile apps’ fngerprints to fnd the one where the highest
number of destination IP addresses overlap.
Networking pattern-based techniques. The systems in this cat-
egory [37, 41, 46, 51] extract networking patterns from the trafc
and build a fngerprint based on them. Examples of features used
for a fngerprint are the inter-arrival time between packets and
packet lengths. For instance, AppScanner [46], a representative of
networking pattern-based systems, makes a fngerprint of a mobile
app based on a sequence of lengths of packets that the app gener-
ates. A classifer is generated based on fngerprints extracted from a
training dataset and is used to identify a mobile app over the trafc.
Raw packet-based techniques. This type of systems [31–33] use
raw packets generated by a mobile app as a fngerprint. For example,
ET-BERT [32], a state-of-the-art system showing a high accuracy,
extracts raw payload bytes from each packet and performs pre-
training and fne-tuning of the BERT model based on the payload
data. Surprisingly, ET-BERT shows that statistically meaningful
patterns exist in both encrypted and plaintext payloads that allow
one to identify mobile apps.

3 LIMITATIONS OF FLOW-BASED MOBILE
FINGERPRINTING SYSTEMS AGAINST VPN

In this section, we discuss the limitation of each category of mobile
fngerprinting systems when we consider an attacker that uses a
VPN on its device to communicate with other parties.

Plaintext metadata-based techniques. The systems in this cate-
gory would be inefective in identifying mobile apps over a VPN
because the plaintext features of trafc are changed when using
the VPN. For instance, a fngerprint generated by FlowPrint [47]
for the attacker’s trafc would form a cluster of VPN server IP ad-
dresses instead of the original servers’ IP addresses; thus, it would
not match any known fngerprints computed without VPNs. Our
experiments show that the F1-score of FlowPrint, trained only
with normal trafc, is 0% when dealing with a fngerprint of an
attacker because FlowPrint does not know the VPN server IP
addresses (see Section 5.4).
Networking pattern-based techniques. Even though the net-
working patterns can be captured from VPN trafc, they might
signifcantly difer from the patterns extracted from normal trafc
because using a VPN can afect networking patterns (e.g., increased
packet length or fragmentation) by encapsulating network packets.
Consequently, the systems become inefcient when they attempt
to identify mobile apps based on the patterns extracted from an
attacker’s trafc. We show that AppScanner [46] achieves an F1-
score of 0% due to the VPN (see Section 5.4).
Raw packet-based techniques. Once an attacker uses a VPN
tunnel, the form of packets over a VPN tunnel changes from the
form of the original packets. For instance, TCP/IP packets can be
changed to UDP/IP packets if the attacker selects the option of
using a UDP tunnel to send the packets. This change can signif-
icantly afect the performance of the fngerprinting systems. For
instance, we show that ET-BERT [32] fails to identify mobile apps
when each app communicates in a VPN tunnel; ET-BERT achieves
an F1-score of nearly 0% (see Section 5.4). We used a feature im-
portance analysis on the Cross-Platform datasets [47] to analyze
the reasons for ET-BERT’s performance degradation for VPN trafc
(see Appendix A). We found that Timestamp Value (TSval) and
Timestamp Echo Reply (TSecr) [21] in the TCP option felds are
the most important features that may afect the performance of
mobile app fngerprinting. That is, ET-BERT’s performance can sig-
nifcantly degrade when we exclude those felds (see Table 1). For
example, in the Cross-Platform (Android) dataset [47], an F1-score
of 0.9910 was reduced to 0.7180. Therefore, ET-BERT would fail to
work on packets over a UDP tunnel because those optional felds
are not used in such situations.

4 OVERVIEW OF APPSNIFFER
To address the limitation of the existing mobile app fngerprinting
systems against VPN, we propose a framework dubbed AppSnif-
fer to identify mobile apps based on network trafc regardless of
whether they are being encapsulated over VPNs or not. In what fol-
lows, we frst introduce our threat model and provide an overview
of AppSniffer. Then, we present in detail each component of
it.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Sanghak Oh, Minwook Lee, Hyunwoo Lee, Elisa Bertino, and Hyoungshick Kim

Figure 1: AppSniffer framework overview.

4.1 Threat Model
In our work, we use the same threat model used in previous mobile
app fngerprinting studies [41, 47]. We assume that an app fnger-
printing system is located at the edge of a network that the system
aims to protect. The system can trace back trafc in its network
but cannot inspect the trafc in other networks. In addition, we
assume that the system can identify a mobile device that produces
network trafc through MAC addresses or mobile device identifca-
tion techniques [6, 40]. Lastly, we focus on a single app fngerprint.
In other words, we assume that only packets from one mobile app
are passed through the network at a given time.

The goal of an attacker in the protected network is to secretly
communicate with its server by hiding the identity of the app
that the attacker uses from mobile app fngerprinting systems. To
achieve this goal, we assume that the attacker can only leverage
network-level solutions such as VPN or a proxy but cannot directly
manipulate the app trafc, which would be expensive.

4.2 High Level Description of AppSniffer
Our framework, AppSniffer, aims to precisely identify mobile
apps when a VPN or a proxy is used to hide their identities. That
is, AppSniffer recognizes apps with a high accuracy using their
network trafc regardless of whether it is being sent over a VPN or
not. Hereinafter, if the trafc is sent over a VPN, we call the trafc
VPN trafc; otherwise, we call it normal trafc.

The main challenge is how to recognize mobile apps from VPN
trafc. We observe that when a mobile app runs over a VPN, the
trafc the app generates is quite diferent from that the app gen-
erates in a normal scenario. Therefore, a mobile app running over
a VPN should be considered independently of the original app in
a normal scenario. To address this issue, one may suggest using a
multi-class classifer that identifes each mobile app with respect to
given trafc. However, we surmise that such an approach would not
work since patterns of VPN trafc depend not only on the network-
ing patterns of the mobile apps but also on the VPN protocol in use
(e.g., OpenVPN over TCP and WireGuard over UDP). Therefore, we
do not combine the trafc of all diferent VPN protocols for a single
classifcation model. Instead, we build the optimized classifcation
model for each VPN protocol individually.

Figure 1 shows the design of AppSniffer consisting of two
stages. For AppSniffer, we need to build � + 1 classifers where
one is for normal trafc and the other � classifers are for � known
VPN protocols, respectively. In the frst stage, AppSniffer classifes

whether some given trafc is VPN trafc or not. Then, in the second
stage, AppSniffer frst identifes the VPN protocol in use to select
the optimal classifcation model for that protocol. When one of �
known VPN protocols is used, AppSniffer can accurately identify
the VPN protocol in use because of the packet header and VPN
servers’ IP addresses. Finally, AppSniffer identifes mobile apps
using the optimal classifcation model for the protocol in use. The
rationale behind this two-stage approach is to consider underlying
VPN protocols that can signifcantly afect network trafc patterns
of mobile apps in developing classifers while getting benefts from
existing approaches on normal trafc. Therefore, we introduce three
components in AppSniffer, namely: 1) VPN trafc classifer used
in the frst stage, 2) � diferent app classifers for VPN trafc and 3)
app classifer for normal trafc used in the second stage.

In the second stage, AppSniffer cannot identify which VPN
protocol is specifcally used when an unknown VPN protocol is
used. In such situations, AppSniffer only labels the given trafc
as unknown VPN trafc but cannot provide the app’s identity in
detail.

4.3 Components of AppSniffer in Detail
Below we describe the three classifers in detail.
VPN trafc classifer. The main purpose of the VPN trafc clas-
sifer is to determine whether some given trafc is VPN trafc or
not. Our approach for this task is to focus on the number of fows
generated by a mobile app, where a fow is defned as a fve-tuple
indicating the protocol in use, source/destination IP addresses, and
source/destination ports. Mobile apps generally communicate with
various destination servers (e.g., CDN servers and ad servers). How-
ever, if an attacker runs mobile apps over a VPN, the mobile trafc,
encapsulated with the same IP addresses and ports, results in a
single fow. Therefore, we develop a VPN trafc classifer that la-
bels some given trafc into VPN trafc if the trafc contains only
one fow; otherwise, the classifer labels it as normal trafc. We
verify the feasibility of our approach by counting the number of
fows from VPN trafc and normal trafc generated by a mobile
app. Our analysis of 150 apps shows that all the VPN trafc consists
of one fow, while the normal trafc has 33.53 fows on average (the
minimum is 2 and the maximum is 353).
App classifers for VPN trafc (�� ��). These classifers aim to
recognize a mobile app over VPN trafc. Designing such classifers
requires addressing the following three challenges. First, we should
decide how to prepare a training dataset for each classifer. Second,
we should consider which features to use for identifying mobile
apps. Finally, we should determine how to select a good algorithm
with appropriate hyper-parameters for each classifer.

Our approach to identifying mobile apps over VPNs is to build
the optimal classifer for each VPN protocol so that the classifer can
label given trafc with the corresponding mobile app. A challenge of
this approach is the lack of public datasets of VPN trafc generated
by mobile apps. Therefore, we implement a script to collect VPN
trafc from mobile apps in a scalable manner.

Based on the dataset, we select a sequence of packet lengths in
the communication fows as the main feature. We also consider
the direction of a packet by prepending ‘+’ or ‘-’ to each length
in the sequence. For example, consider a VPN client that sends
a 100-byte packet to a VPN server that responds with a 200-byte
packet. We describe the sequence of packet lengths as (+100, −200).
We refer to the Adjusted Mutual Information (AMI) analysis [47],

AppSniffer: Towards Robust Mobile App Fingerprinting Against VPN WWW ’23, April 30–May 04, 2023, Austin, TX, USA

where a packet length is one of the highest-scored features. Other
features in the top 10 ones are source/destination IP addresses and
the averaged time interval between fows. However, we found those
features inappropriate for our task because VPN server IP addresses
are used instead of the original servers’ IP addresses, and the fows
are combined. To consider the context of a mobile app, we focus
on a sequence of packets, not a single packet, for fngerprinting.

To select an appropriate model for our task, we use AutoGloun [13],
the state-of-the-art Automated Machine Learning tool that automat-
ically fnds the best model with optimal hyper-parameters based
on a given dataset. It searches a best-ft classifer from 8 types of
models5 and ensemble models. In ensembling, AutoGluon also sup-
ports bagging and multi-layer stacking. Finally, for VPN trafc, we
develop the app classifer dubbed ScanVPN, which consists of a
stacked ensemble model using Light Gradient Boosting Machine
(LightGBM) and a FastAI library-based neural network.
App classifer for normal trafc (�������). After passing through
the VPN trafc classifer, normal trafc is fed to the app classifer
for normal trafc. As existing mobile app fngerprinting systems
(e.g., FlowPrint [47] or AppScanner [46]) show high accuracy,
we leverage the best existing system for this component.

5 EXPERIMENTS
This section describes how we prepare the datasets used in our
experiment and how we choose training and testing datasets to
show the limitations of existing mobile app fngerprinting systems
and evaluate the performance of AppSniffer compared with other
systems.

5.1 Dataset
For our experiments, we generate a dataset of VPN and normal
trafc from 100 mobile apps selected from the top-200 Android
apps listed on the Google Play Store in the US6 (details can be
found in Appendix B). The apps are chosen when they generate
enough fows to be identifed by the state-of-the-art app fngerprint-
ing systems (i.e., FlowPrint and AppScanner). Each of the 100
selected apps is run 50 times, with the trafc generated recorded
in each trial, each lasting 20 seconds, as determined by our pre-
liminary study (see Section 5.2). To increase the diversity of the
dataset, we also collected additional 50 samples of 20-second-long
trafc per app, generated by simulating user interactions using
Monkey 7.

We collect VPN trafc from mobile apps running four VPN clients
– SuperVPN, TurboVPN, NordVPN, and Surfshark – that execute
diferent VPN protocols. We select the VPN clients based on the
number of downloads in Google Play Store. Information about
the four VPN clients is given in Table 2. We summarize our VPN
datasets with statistics on the number of packets in each VPN fow
in Table 3. We observe that for a unit of time, the fows in the
TurboVPN dataset have the highest number of packets, and those
on the Surfshark dataset have the least number of packets. We
surmise that diference in the transport layer might be a reason
since UDP communications are typically faster than TCP [7].

5Random Forest, XGBoost, CatBoost, kNN, Logistic Regression, Light Gradient Boost-
ing Machine (LightGBM), ExtraTrees, and Tabular Neural Network
6We select mobile apps from the list in accordance with Google’s app ranking system
on 21-December-2021
7https://developer.android.com/studio/test/other-testing-tools/monkey

Table 2: Selected VPN apps.

VPN Provider Name Version # Download VPN Type
SuperVPN 2.7.2 > 100 million Free Provider
TurboVPN 3.7.4.2 > 100 million Paid Provider
NordVPN 5.11.5 > 50 million Paid Provider
Surfshark 2.8.1.8 > 50 million Paid Provider

Table 3: Number of packets in each VPN fow.

Dataset Transport Mean (Std) Median Min Max
SuperVPN UDP 3412.36 (5990.19) 1469 28 57203
TurboVPN UDP 4219.88 (9341.60) 1345 24 65758
NordVPN UDP 2703.10 (4516.52) 1072 40 51355
Surfshark TCP 1641.93 (3666.92) 442 38 35393

5.2 Experiment Setup

Time series cross-validation. To assess the performance of Flow-
Print, AppScanner, and ET-BERT on VPN trafc and normal trafc,
we frst split samples of each app into fve folds to perform cross-
validation in time series. Our purpose is to see how the performance
of a system changes as the size of training samples increases. Fi-
nally, we prepare three diferent scenarios called CV1, CV2, and
CV3 (see Figure 2).

Figure 2: Five-fold time series cross-validation.
For metrics, we use four typical metrics (precision, recall, F1-

score, and accuracy) to evaluate the performance of FlowPrint,
AppScanner, and ET-BERT. Micro-average is used [18], which
calculates the proportion-weighted mean value of each metric for
the individual apps (see Equation 1) to handle imbalanced sizes of
multiple classes.

���������� −��� = �0 · ����������0 + · · · + �� · ����������� (1)

Optimal execution time for app recognition. To collect apps’
trafc, we face the challenge of determining the appropriate amount
of time for the execution time as it may afect the performance of
the systems. Therefore, we conduct experiments to fnd the optimal
execution time when the performance of the systems becomes
stable. To this end, we evaluate FlowPrint and AppScanner with
respect to the F1-score of recognizing app, varying the execution
time to 5, 10, 15, 20, 25, and 30 seconds respectively, which we
report the results in Table 4. We fnd that the performance of the
systems becomes stable after 20 seconds. Therefore, we decide to
use 20 seconds for the execution time per sample.

Table 4: Summary of tested execution time optimization.

Execution Time
FlowPrint
F1-score

AppScanner
F1-score

5 sec 0.9642 0.7372
10 sec 0.9874 0.7385
15 sec 0.9826 0.7314
20 sec 0.9712 0.7953
25 sec 0.9651 0.7884
30 sec 0.9626 0.7805

https://7https://developer.android.com/studio/test/other-testing-tools/monkey

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Sanghak Oh, Minwook Lee, Hyunwoo Lee, Elisa Bertino, and Hyoungshick Kim

Table 5: Comparison results of classifers for normal trafc. NN stands for neural network, RF for Random Forest.

Dataset
LightGBM + FastAI NN + RF + CatBoost
Precision Recall F1-score Accuracy Precision

FlowPrint
Recall F1-score Accuracy Precision

AppScanner
Recall F1-score Accuracy Precision

ET-BERT
Recall F1-score Accuracy

Normal
CV1
CV2
CV3

0.8426 0.8310 0.8348 0.8310
0.8706 0.8584 0.8630 0.8584
0.8796 0.8675 0.8719 0.8675

0.9815
0.9878
0.9822

0.9756 0.9756
0.9839 0.9843
0.9754 0.9767

0.9756
0.9839
0.9754

0.9832
0.9844
0.9884

0.5317 0.6707
0.6198 0.7462
0.6566 0.7766

0.5317
0.6198
0.6566

0.2205
0.5659
0.5413

0.1888 0.1637
0.4442 0.4657
0.4497 0.4692

0.1888
0.4442
0.4497

Data pre-processing. We perform pre-processing in two aspects.
First, we remove background trafc (e.g., Dynamic Host Confgura-
tion Protocol (DHCP), Address Resolution Protocol (ARP)) that is
not specifc to apps after collecting the samples. Second, we mask
values in some felds (e.g., timestamp) that can be specifcally deter-
mined in experimental settings. We found that ET-BERT achieved
high accuracy relying on Timestamp Value (TSval) and Timestamp
Echo Reply (TSecr) [21] in the TCP option felds. However, such
high accuracy is mainly due to the similar timestamps in the train-
ing and testing sets, which would be unacceptable in real-world
environments. Other than TSval and TSecr, we also mask the Se-
curity Parameter Index (SPI) feld in the header of Encapsulating
Security Payload (ESP) in the TurboVPN (i.e., IPsec-based VPN pro-
tocol) dataset. SPI is an index to search for the specifc security
association (SA) that contains information about encryption algo-
rithms and keys. The SPI value is randomly generated whenever
the VPN tunnel is established. However, in some cases, the same
SPI value is repeatedly used across diferent samples, which should
not happen in practice. Therefore, we conclude that SPI is not an
appropriate feature; thus, we also mask all the SPI values.
Experiment environment. For model training, we use a GPU
server that consists of a Tesla V100-PCIe with 34GB memory and
an Intel Xeon(R) E5-2687w v3 @3.10 GHz with 264GB RAM. We
use a Google Pixel 4 phone for our experiments.

5.3 Implementation

Dataset generation script We implement a script for generating
the VPN trafc for desired apps in an automated way. The script is
written in Python 3 using bash shell commands. It works as follows:
with Android Debug Bridge (ADB) 8, the script automatically in-
stalls, executes, and uninstalls apps. During the app execution, with
tshark 9 (the terminal version of Wireshark 10), the script captures
the app trafc, while the mobile device is connected to the Internet.
VPN trafc classifer We implement the classifer using Python
3 with the tshark package to parse characteristics of fows from
trafc fles (i.e., Pcap fles).
App classifer for VPN trafc We implement the classifer using
Python 3 with AutoGluon 11 packages. For model selection, our
strategy is to fnd the best model and optimize it to improve the
F1-score. We also set up a ftting time of modeling as 10 minutes
since the model ftting with unlimited time setup takes too much
time, but the performance is not much higher than that of models
with our ftting time.

5.4 Evaluation
In this section, we evaluate the performance of AppSniffer in
mobile app identifcation with regard to VPN trafc and normal
trafc. Our experimental results are shown in Table 5, Table 6, and
Table 7 where the best results are highlighted in bold.
8https://developer.android.com/studio/command-line/adb
9https://tshark.dev
10https://www.wireshark.org
11https://auto.gluon.ai

Optimization of AppSnifer. As AppSniffer allows using exist-
ing techniques for the app classifer for normal trafc (�� �����),
we experiment to understand the impact of diferent types of clas-
sifers on the performance of AppSniffer. As classifers, we use
FlowPrint, AppScanner, and ET-BERT. In addition to them, we
also build our own model using AutoGloun [13], which is gener-
ated as a stacked ensemble model consisting of LightGBM, a FastAI
library-based neural network, Random Forest (RF), and CatBoost,
which is similar to ScanVPN but trained on normal trafc. Note that
ScanVPN was originally designed for identifying apps over VPNs
where each app generates only one fow unless the VPN server
is changed. Therefore, the fow can represent the corresponding
app. However, in a normal scenario, each app generates several
fows during execution. Therefore, we should choose a representa-
tive fow to identify the corresponding app. Our selection is a fow
containing the maximum number of packets among the fows the
app generates. Then, we use a sequence of packet lengths of the
representative fow to build our model for normal trafc.

Table 5 shows that FlowPrint is the best in that it achieves the
highest F1-score of 97.67% compared to the others (12.02% higher
than the second), indicating that a set of destination IP addresses
is a highly useful feature for identifying the apps for non-VPN
trafc. Finally, we select FlowPrint for the app classifer for normal
trafc (�������). Note that the model built by AutoGloun shows
the second-best performance, indicating that a sequence of packet
lengths in the longest fow (i.e., the fow in which the most number
of packets are included) can also be a useful feature for identifying
mobile apps.

On the other hand, for the app classifer for VPN trafc (�� ��),
we evaluate ScanVPN and the existing app fngerprinting systems.
Here, the models are all trained based on VPN trafc. For the ex-
periment, we slightly modify the source code of AppScanner to
make it work on UDP trafc because it originally focuses on HTTPS
(TCP). Table 6 shows that ScanVPN is the best (F1-score between
84.66% to 95.49%) compared to others. Finally, we select ScanVPN
for the app classifer for VPN trafc (�� ��) component.

We note two observations on AppScanner as follows. First, we
observe that AppScanner demonstrates high precision between
80.77% and 97.36% and low recall between 16.40% and 33.32%,
demonstrating that there are many false negative cases. In other
words, it fails to detect many malicious apps, which would be in-
appropriate for a security application. Second, although AppScan-
ner and ScanVPN use a similar feature (i.e., a sequence of packet
lengths), the gap between the performance of ScanVPN (F1-score
between 84.66% and 95.49%) and that of AppScanner (F1-score
between 25.63% and 47.56%) is signifcantly large.

We also observe FlowPrint’s critical limitation for VPN trafc.
FlowPrint cannot identify apps on VPN trafc (F1-score between
0.56% and 3.41%). Note that FlowPrint identifes apps based on
their destination IP addresses. In our experiment, FlowPrint only
refers to the VPN servers’ IP addresses; thus, it fails to identify apps
with insufcient information. In other words, FlowPrint cannot
distinguish two diferent apps that use the same VPN server as

https://11https://auto.gluon.ai
https://10https://www.wireshark.org
https://8https://developer.android.com/studio/command-line/adb

AppSniffer: Towards Robust Mobile App Fingerprinting Against VPN WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 6: Comparison results of classifers for VPN trafc.

Dataset
Precision

ScanVPN
Recall F1-score Accuracy Precision

FlowPrint
Recall F1-score Accuracy Precision

AppScanner
Recall F1-score Accuracy Precision

ET-BERT
Recall F1-score Accuracy

SuperVPN
CV1
CV2
CV3

0.8383
0.9088
0.9342

0.8233 0.8166
0.9013 0.8992
0.9273 0.9252

0.8233
0.9013
0.9273

0.0236
0.0204
0.0172

0.0467 0.0202
0.0480 0.0203
0.0473 0.0193

0.0467
0.0480
0.0473

0.8394
0.9810
0.9736

0.1657 0.2600
0.2793 0.4127
0.3332 0.4756

0.1657
0.2793
0.3332

0.0000
0.0000
0.0002

0.0067 0.0001
0.0067 0.0001
0.0127 0.0004

0.0067
0.0067
0.0127

TurboVPN
CV1
CV2
CV3

0.8978
0.9507
0.9590

0.8887 0.8873
0.9453 0.9450
0.9553 0.9549

0.8887
0.9453
0.9553

0.0335
0.0339
0.0322

0.0693 0.0340
0.0747 0.0344
0.0707 0.0341

0.0693
0.0747
0.0707

0.8651
0.9537
0.9680

0.1514 0.2427
0.2394 0.3655
0.2787 0.4152

0.1514
0.2394
0.2787

0.0000
0.0000
0.0000

0.0067 0.0001
0.0067 0.0001
0.0067 0.0001

0.0067
0.0067
0.0067

NordVPN
CV1
CV2
CV3

0.8518
0.9009
0.9397

0.8367 0.8324
0.8887 0.8853
0.9333 0.9331

0.8367
0.8887
0.9333

0.0024
0.0029
0.0032

0.0280 0.0042
0.0320 0.0050
0.0333 0.0056

0.0280
0.0320
0.0333

0.9421
0.9668
0.9655

0.1504 0.2457
0.2154 0.3371
0.2640 0.3998

0.1504
0.2154
0.2640

0.0000
0.0000
0.0000

0.0067 0.0001
0.0067 0.0001
0.0067 0.0001

0.0067
0.0067
0.0067

Surfshark
CV1
CV2
CV3

0.6852
0.7997
0.8650

0.6593 0.6510
0.7760 0.7682
0.8507 0.8466

0.6593
0.7760
0.8507

0.0139
0.0136
0.0140

0.0500 0.0151
0.0507 0.0150
0.0500 0.0141

0.0500
0.0507
0.0500

0.5878
0.7768
0.8077

0.1063 0.1680
0.1399 0.2221
0.1640 0.2563

0.1063
0.1399
0.1640

0.0000
0.0000
0.0000

0.0067 0.0001
0.0067 0.0001
0.0067 0.0001

0.0067
0.0067
0.0067

Table 7: Comparison results of overall performance on normal and VPN dataset.

Dataset
Precision

AppSniffer
Recall F1-score Accuracy Precision

FlowPrint
Recall F1-score Accuracy Precision

AppScanner
Recall F1-score Accuracy Precision

ET-BERT
Recall F1-score Accuracy

Normal
&

All VPNs

CV1
CV2
CV3

0.8231
0.8861
0.9155

0.8078 0.8044
0.8739 0.8721
0.9068 0.9063

0.8078
0.8739
0.9068

0.2110
0.2117
0.2098

0.2339 0.2098
0.2379 0.2118
0.2353 0.2100

0.2339
0.2379
0.2353

0.9837
0.9846
0.9887

0.4517 0.5951
0.5331 0.6740
0.5648 0.7036

0.4517
0.5331
0.5648

0.4071
0.4639
0.4911

0.3928 0.3968
0.4529 0.4562
0.4639 0.4713

0.3928
0.4529
0.4639

their fngerprints are identical. In the VPN scenario, FlowPrint
can recognize whether the app trafc is sent from VPN or not, but
it is not proper for the app classifer for VPN trafc.

There are two fndings on ET-BERT. First, as the results in Table 6
show, we observe that ET-BERT is inefective for app identifcation
for VPN trafc. The F1-scores for ET-BERT on all VPN datasets are
less than 0.04%. As discussed, ET-BERT highly relies on plaintext
felds, including TCP option felds, TLS record headers, and plaintext
metadata in TLS, which requires the transport layer to be TCP.
However, many VPN protocols use UDP as their transport layer;
thus, the F1-score of ET-BERT decreases compared to that of TCP
trafc. Second, due to the limited size (a maximum sequence length
of 512 tokens by default [10]) of the input sequence for the BERT
model, it is difcult for ET-BERT to use all the raw packets to build
its model. We fnd that in the ET-BERT implementation, a feature
vector is generated by concatenating raw packets until the number
of tokens is enough for model training. The default value of the
number of packets to be parsed is fve, which means that the frst
fve packets of a given fow are used to construct a feature vector.
Because of it, in some fows, there are cases where only packets of
TCP or TLS handshakes are captured for a feature vector, making
ET-BERT depend on the plaintext metadata (e.g., a server name
in TLS Client Hello) in the normal scenario. However, ET-BERT
cannot learn these features in the VPN dataset. Therefore, ET-BERT
is inappropriate for the app recognition for VPN trafc because of
lack of information. For example, as we can see from the results on
SuperVPN and NordVPN, ET-BERT completely failed to identify the
app trafc (F1-score of 0.04% and 0.01% on SuperVPN and NordVPN).
When it comes to TurboVPN and Surfshark, the dominant features
are SPI in IPsec ESP, TSval, and TSecr in the TCP option feld. We
fnd that without them (i.e., applying to mask), the performance of
ET-BERT signifcantly decreases. Moreover, when the dataset size
is insufcient to train the patterns, the performance of ET-BERT
decreases close to the F1-score of 0%. That is, a large training dataset
size is required for fne-tuning compared to other systems.
Overall performance of AppSniffer. In this experiment, we
compare the overall performance of AppSniffer with those of the
existing app fngerprinting systems against the mixed trafc with
VPN trafc and normal trafc. The objective of this experiment is
to see whether the systems are practical as they may face mixed
trafc in general. Our result reports that AppSniffer shows the

best performance (90.63% of F1-score) among the evaluated systems
(see Table 7).

In addition, we also experimented to see the performance of the
systems when they were trained on normal trafc and tested on
VPN trafc to show the limitation of the existing app fngerprinting
systems. The result shows that all the existing systems cannot
properly recognize the VPN trafc. The F1-scores of FlowPrint
and AppScanner are 0%, and that of ET-BERT is less than 0.52%
(see Table 8), demonstrating that it is necessary to consider the
VPN trafc for training.

Table 8: Performance of ET-BERT on VPN trafc dataset
when ET-BERT is trained only with normal trafc.

ET-BERT (trained only with normal trafc)
Dataset

Precision Recall F1-score Accuracy
SuperVPN 0.0081 0.0080 0.0052 0.0080
TurboVPN 0.0039 0.0093 0.0035 0.0093
NordVPN 0.0033 0.0080 0.0037 0.0080
Surfshark 0.0062 0.0087 0.0051 0.0087

Optimal feature size for the app classifer. For ScanVPN, we
select the feature size (i.e., the number of packets in a sequence)
as the average number of packets in each fow based on a train-
ing dataset. For example, based on a training dataset in CV3, 3,410,
4,213, 2,670, and 1,643 are selected as the feature sizes on SuperVPN,
TurboVPN, NordVPN, and Surfshark, respectively. To optimize the
classifer, we also conduct an experiment to see the performance of
ScanVPN varying the feature size used in a sequence in the perfor-
mance of ScanVPN, ranging from 500 to 10,000 (see Figure 3). The
experiment is done on CV3, and the metric used is F1-score. Over-
all, ScanVPN’s performance improves as the feature size increases,
even though there are some fuctuations. Based on these results,
we suggest that the feature size should be larger than 1,250.

6 DISCUSSION AND LIMITATIONS

Adaptive attacks. A limitation of our framework is that it would
be vulnerable to adaptive attacks. For example, an attacker can
generate the app trafc with a proxy (e.g., Obfs4 proxy [3]) that can
change a sequence of packet lengths in a fow. That is, using a proxy,
the attacker can append padding bytes with zero to all the packets
to make them equal to the maximum transmission unit. Such an

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Sanghak Oh, Minwook Lee, Hyunwoo Lee, Elisa Bertino, and Hyoungshick Kim

Figure 3: Performance of ScanVPN with the feature size.

active obfuscation scheme may make difcult for AppSniffer to
fnd signifcant patterns from trafc. Furthermore, we do not design
AppSniffer to be robust against adversarial example attacks [5, 38].
As a countermeasure, we can introduce an adversarial example
detection system [15, 36] in the frst stage of AppSniffer and block
the attack trafc. As another countermeasure, we can generate and
train adversarial trafc for adversarial learning [34].
Generating valid datasets. Based on the feature importance anal-
ysis, we fnd that some raw packet-based systems highly rely on
the features in a specifc scenario, which makes it difcult to de-
ploy the system in the real world. For instance, we fnd that the
dominant features of one system are TCP option felds which are
not generally used. Further, some TCP felds are timestamps when
the dataset is collected, and the values are similar in both the train-
ing set and the testing set (only the last byte of the timestamps
are diferent), which results in high accuracy. However, in the real
world, we cannot expect that there exist such similar values in the
felds. Therefore, we suggest masking some feld values (e.g., TSval
and TSecr in the TCP option felds) in the datasets that cannot be
refected in real-world situations.
Limitation against unknown VPNs Our current AppSniffer
implementation cannot identify apps over VPNs unknown to App-
Sniffer. In this case, AppSniffer can only label the given trafc
as unknown VPN trafc. For future research, we plan to explore
additional features and develop more advanced classifers for iden-
tifying apps when an unseen VPN protocol is used.
Limitation against multiple active apps AppSniffer is designed
as a single-label classifer, in line with previous works such as
[32, 46, 47], under the same assumptions. However, in practical
settings, multiple apps may be running simultaneously, making
it difcult to diferentiate packets related to a specifc app since
they are merged in a single VPN fow. To address this issue, we
have enhanced AppSniffer by dividing the VPN fow into smaller
segments based on packet inter-arrival times and classifying each
segment individually. We conducted a pilot study to evaluate the
feasibility of this approach. We randomly selected two apps from a
pool of 10 popular Android apps and ran them simultaneously over
TurboVPN 50 times. Trafc data for both apps was collected for 30
seconds. Our preliminary results demonstrate that AppSniffer was
able to identify both apps with an accuracy of 10%, and either of
the apps with a 58% accuracy. In the future, we plan to develop a

more general multi-label model to handle scenarios where multiple
apps are running concurrently.

7 RELATED WORK

Mobile App Fingerprinting Mobile trafc has increased dramati-
cally in recent years as mobile devices and apps have grown tremen-
dously. In the meantime, mobile app fngerprinting is getting much
attention. AppPrint [37] makes fngerprints of mobile apps based
on statistics of tokens such as HTTP header strings or query charac-
ters contained in HTTP packets. However, this approach is difcult
to use in practice when packets are encrypted; AppPrint cannot
read content of the encrypted packets. To address such a challenge,
Taylor et al. [46] proposed AppScanner that classifes HTTPS traf-
fc with networking patterns instead of content in HTTP headers.
AppScanner uses 54 statistical features from the collected packets
and builds models based on a support vector machine and Random
Forest models. Some frameworks [41, 47] have been proposed to use
characteristics of mobile trafc according to user behavior. Using a
semi-supervised learning approach, FlowPrint [47] uses the desti-
nation IP addresses/port numbers, timestamps, packet sizes, and
TLS certifcate to identify mobile apps. MAppGraph [41] constructs
a communication graph containing a node with the destination IP
address and port as a tuple and an edge-weighted communication
correlation. This approach uses deep graph convolution neural net-
works. Lin et al. [32] proposed a system dubbed ET-BERT that takes
a pre-trained BERT model based on raw trafc and fne-tunes it on
encrypted trafc. However, as discussed, all of the above approaches
are inefective in identifying apps running over VPNs.
VPN Detection There have been several previous approaches to
detect VPN trafc. Gao et al. [17] searches the best VPN trafc
classifers among Naive Bayesian, Logistic Regression, Support
Vector Machine, XGBoost, and Random Forest algorithms based on
deep packet inspection, sample entropy fngerprint, and a sequence
of payload lengths, respectively. Similarly, Bagui et al. [4] also
uses machine learning algorithms based on time-related features
to distinguish VPN trafc from normal trafc. Other approaches
learn features from raw trafc or detected VPN trafc using LSTM
models [16, 48]. Xue et al. [50] propose an approach for OpenVPN
fngerprinting based on byte patterns, packet lengths, and responses
from the VPN server. These approaches, however, only focus on
detecting VPN trafc but do not aim to identify mobile apps over
VPNs.

8 CONCLUSION
In this paper, we discuss the limitation of the existing mobile app
fngerprint systems against an attacker that uses VPN protocols to
hide its malicious activities. We propose AppSniffer, a framework
able to recognize app trafc over both VPN trafc and normal trafc.
Our numerical results show that AppSniffer is efective with a
high F1-score of 90.63%.

There are three directions for future work. First, we plan to
extend AppSniffer to prevent adaptive or adversarial attacks. For
instance, we may consider obfuscation. Second, we will strengthen
AppSniffer to identify apps over unknown VPNs. Third, we will
extend AppSniffer to identify simultaneously active apps.

AppSniffer: Towards Robust Mobile App Fingerprinting Against VPN WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
The authors would thank anonymous reviewers. Hyoungshick Kim
and Hyunwoo Lee are the corresponding authors. This work was
supported by the KENTECH Research Grant (202200048A), Korea
Internet & Security Agency (KISA) grant (No.1781000003), and the
Institute of Information & communications Technology Planning
& Evaluation (IITP) grants (No.2022-0-00688, No.2019-0-01343, and
No.2022-0-00495) funded by the Korean government.

REFERENCES
[1] 2022. Percentage of Mobile Device Website Trafc Worldwide from 1st Quarter

2015 to 2nd Quarter 2022. https://www.statista.com/statistics/277125/share-of-
website-traffc-coming-from-mobile-devices. (Accessed on 9/23/2022).

[2] André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. 2010. Per-
mutation Importance: A Corrected Feature Importance Measure. Bioinformatics
(2010).

[3] Yawning Angel and Philipp Winter. 2014. Obfs4 (The Obfourscator). https:
//gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc. (Accessed on
10/06/2022).

[4] Sikha Bagui, Xingang Fang, Ezhil Kalaimannan, Subhash C. Bagui, and Joseph
Sheehan. 2017. Comparison of Machine-learning Algorithms for Classifcation
of VPN Network Trafc Flow Using Time-related Features. Journal of Cyber
Security Technology (2017).

[5] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. In Proc. of the IEEE Symposium on Security and Privacy (S&P).

[6] Yi-Chao Chen, Yong Liao, Mario Baldi, Sung-Ju Lee, and Lili Qiu. 2014. OS
Fingerprinting and Tethering Detection in Mobile Networks. In Proc. of the ACM
Internet Measurement Conference (IMC).

[7] Irfaan Coonjah, Pierre Clarel Catherine, and K. M. S Soyjaudah. 2015. Experi-
mental Performance Comparison Between TCP vs UDP Tunnel Using OpenVPN.
In Proc. of the IEEE International Conference on Computing, Communication and
Security (ICCCS).

[8] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.
2013. NetworkProfler: Towards Automatic Fingerprinting of Android Apps. In
Proc of the IEEE International Conference on Computer Communications (INFO-
COM).

[9] Statista Research Department. 2022. Number of smartphone subscriptions world-
wide from 2016 to 2021, with forecasts from 2022 to 2027. https://www.statista.c
om/statistics/330695/number-of-smartphone-users-worldwide/. (Accessed on
10/14/2022).

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[11] Jason A Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel.
In Proc. of the ISOC Network and Distributed System Security Symposium (NDSS).

[12] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and
Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Trafc Using
Time-related Features. In Proc. of the International Conference on Information
Systems Security and Privacy (ICISSP).

[13] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,
Mu Li, and Alexander Smola. 2020. Autogluon-Tabular: Robust and Accurate
AutoML for Structured Data. arXiv preprint arXiv:2003.06505 (2020).

[14] Dino Farinacci, Tony Li, Stan Hanks, David Meyer, and Paul Traina. 2000. Generic
Routing Encapsulation (GRE). https://www.rfc-editor.org/rfc/rfc2784. (Accessed
on 10/10/2022).

[15] Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. 2017.
Detecting Adversarial Samples from Artifacts. arXiv preprint arXiv:1703.00410
(2017).

[16] Peipei Fu, Chang Liu, Qingya Yang, Zhenzhen Li, Gaopeng Gou, Gang Xiong,
and Zhen Li. 2020. NSA-Net: A NetFlow Sequence Attention Network for Virtual
Private Network Trafc Detection. In Proc. of the International Conference on Web
Information Systems Engineering (WISE).

[17] Ping Gao, Guangsong Li, Yanan Shi, and Yang Wang. 2020. VPN Trafc Classif-
cation Based on Payload Length Sequence. In Proc. of the International Conference
on Networking and Network Applications (NaNA).

[18] Cyril Goutte and Eric Gaussier. 2005. A Probabilistic Interpretation of Precision,
Recall and F-Score, with Implication for Evaluation. In Proc. of the European
Conference on Information Retrieval (ECIR).

[19] Kory Hamzeh, Grueep Pall, William Verthein, Jef Taarud, W Little, and Glen
Zorn. 1999. Point-to-Point Tunneling Protocol (PPTP). https://www.rfc-editor.o
rg/rfc/rfc2637. (Accessed on 10/10/2022).

[20] Jeremy Howard and Sylvain Gugger. 2020. FastAI: A Layered API for Deep
Learning. Information (2020).

[21] Van Jacobson, Robert Braden, and David Borman. 1992. TCP Extensions for High
Performance. https://www.rfc-editor.org/rfc/rfc1323. (Accessed on 10/06/2022).

[22] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo.
2020. Programmable In-Network Security for Context-aware BYOD Policies. In
Proc. of the USENIX Security Symposium (USENIX Security).

[23] Charlie Kaufman, Paul Hofman, Yoav Nir, Pasi Eronen, and Tero Kivinen. 2014.
Internet Key Exchange Protocol Version 2 (IKEv2). https://www.rfc-editor.org/r
fc/rfc7296. (Accessed on 09/23/2022).

[24] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efcient Gradient Boosting
Decision Tree. Advances in Neural Information Processing Systems (2017).

[25] Stephen Kent. 2005. IP Encapsulating Security Payload (ESP). https://www.rfc-
editor.org/rfc/rfc4303. (Accessed on 10/10/2022).

[26] S. Kent and K. Seo. 2005. Security Architecture for the Internet Protocol. https:
//www.rfc-editor.org/rfc/rfc4301. (Accessed on 09/23/2022).

[27] Hyunchul Kim, Kimberly C Clafy, Marina Fomenkov, Dhiman Barman, Michalis
Faloutsos, and KiYoung Lee. 2008. Internet Trafc Classifcation Demystifed:
Myths, Caveats, and the Best Practices. In Proc. of the ACM International Confer-
ence on emerging Networking EXperiments and Technologies (CoNEXT).

[28] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Mamun,
and Ali A. Ghorbani. 2017. Characterization of Tor Trafc Using Time Based
Features. In Proc. of the International Conference on Information Systems Security
and Privacy (ICISSP).

[29] Hyunwoo Lee, Imtiaz Karim, Ninghui Li, and Elisa Bertino. 2022. VWAnalyzer:
A Systematic Security Analysis Framework for the Voice over WiFi Protocol. In
Proc. of the ACM on Asia Conference on Computer and Communications Security
(ASIACCS).

[30] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. 2021. TLS 1.3 in Practice: How
TLS 1.3 Contributes to the Internet. In Proc. of the ACM Web Conference (WWW).

[31] Kunda Lin, Xiaolong Xu, and Honghao Gao. 2021. TSCRNN: A Novel Classif-
cation Scheme of Encrypted Trafc Based on Flow Spatiotemporal Features for
Efcient Management of IIoT. Computer Networks (2021).

[32] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. 2022.
ET-BERT: A Contextualized Datagram Representation with Pre-training Trans-
formers for Encrypted Trafc Classifcation. In Proc. of the ACM Web Conference
(WWW).

[33] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. 2020. Deep Packet: A Novel Approach for Encrypted
Trafc Classifcation Using Deep Learning. Soft Computing (2020).

[34] Daniel Lowd and Christopher Meek. 2005. Adversarial Learning. In Proc. of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD).

[35] Petr Matoušek, Ivana Burgetová, Ondřej Ryšavỳ, and Malombe Victor. 2020. On
Reliability of JA3 Hashes for Fingerprinting Mobile Applications. In Proc. of the
EAI International Conference on Digital Forensics and Cyber Crime (ICDF2C).

[36] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischof. 2017.
On Detecting Adversarial Perturbations. arXiv preprint arXiv:1702.04267 (2017).

[37] Stanislav Miskovic, Gene Moo Lee, Yong Liao, and Mario Baldi. 2015. AppPrint:
Automatic Fingerprinting of Mobile Applications in Network Trafc. In Proc. of
the International Conference on Passive and Active Network Measurement (PAM).

[38] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2021. Defeating DNN-
Based Trafc Analysis Systems in Real-Time With Blind Adversarial Perturba-
tions. In Proc. of the USENIX Security Symposium (USENIX Security).

[39] G. Pall. 1997. Microsoft Point-To-Point Compression (MPPC) Protocol. https:
//www.rfc-editor.org/rfc/rfc3078. (Accessed on 10/10/2022).

[40] Ioannis Papapanagiotou, Erich Nahum, and Vasileios Pappas. 2012. Confguring
DHCP Leases in the Smartphone Era. In Proc. of the ACM Internet Measurement
Conference (IMC).

[41] Thai-Dien Pham, Thien-Lac Ho, Tram Truong-Huu, Tien-Dung Cao, and Hong-
Linh Truong. 2021. MAppGraph: Mobile-App Classifcation on Encrypted Net-
work Trafc Using Deep Graph Convolution Neural Networks. In Proc. of the
Annual Computer Security Applications Conference (ACSAC).

[42] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
https://www.rfc-editor.org/rfc/rfc8446.

[43] Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. 2004. Accurate, Scalable
In-Network Identifcation of P2P Trafc Using Application Signatures. In Proc. of
the ACM Web Conference (WWW).

[44] William Simpson. 1993. The Point-to-Point Protocol (PPP). https://www.rfc-
editor.org/rfc/rfc1548. (Accessed on 10/10/2022).

[45] Zixian Tang, Qiang Wang, Wenhao Li, Huaifeng Bao, Feng Liu, and Wen Wang.
2021. HSLF: HTTP Header Sequence Based LSH Fingerprints for Application
Trafc Classifcation. In Proc. of the International Conference on Computational
Science (ICCS).

[46] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2016.
AppScanner: Automatic Fingerprinting of Smartphone Apps from Encrypted
Network Trafc. In Proc. of the IEEE European Symposium on Security and Privacy
(EuroS&P).

https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.rfc-editor.org/rfc/rfc2784
https://www.rfc-editor.org/rfc/rfc2637
https://www.rfc-editor.org/rfc/rfc2637
https://www.rfc-editor.org/rfc/rfc1323
https://www.rfc-editor.org/rfc/rfc7296
https://www.rfc-editor.org/rfc/rfc7296
https://www.rfc-editor.org/rfc/rfc4303
https://www.rfc-editor.org/rfc/rfc4303
https://www.rfc-editor.org/rfc/rfc4301
https://www.rfc-editor.org/rfc/rfc4301
https://www.rfc-editor.org/rfc/rfc3078
https://www.rfc-editor.org/rfc/rfc3078
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc1548
https://www.rfc-editor.org/rfc/rfc1548

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Sanghak Oh, Minwook Lee, Hyunwoo Lee, Elisa Bertino, and Hyoungshick Kim

[47] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J.
Dubois, Martina Lindorfer, David Chofnes, Maarten van Steen, and Andreas
Peter. 2020. FlowPrint: Semi-supervised Mobile-App Fingerprinting on Encrypted
Network Trafc. In Proc. of the ISOC Network and Distributed System Security
Symposium (NDSS).

[48] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. 2017.
End-to-end Encrypted Trafc Classifcation with One-dimensional Convolution
Neural Networks. In Proc. of the IEEE international conference on intelligence and
security informatics (ISI).

[49] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang Sheng. 2017.
Malware Trafc Classifcation Using Convolutional Neural Network for Repre-
sentation Learning. In Proc. of the IEEE International conference on information
networking (ICOIN).

[50] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis, J. Alex Halder-
man, Jedidiah R. Crandall, and Roya Ensaf. 2022. OpenVPN is Open to VPN
Fingerprinting. In Proc. of the USENIX Security Symposium (USENIX Security).

[51] Liuqun Zhai, Zhuang Qiao, Zhongfang Wang, and Dong We. 2021. Identify What
You are Doing: Smartphone Apps Fingerprinting on Cellular Network Trafc. In
Proc. of the IEEE Symposium on Computers and Communications (ISCC).

A FEATURE IMPORTANCE SCORES OF
ET-BERT

We used a permutation-based feature importance measure [2] to an-
alyze the relative importance of individual features. Table 9 provides
the importance scores computed for 10 most important features
of ET-BERT on the Cross-Platform datasets [47]. In both Cross-
Platform (iOS) and Cross-Platform (Android) datasets, Timestamp
Value (TSval) and Timestamp Echo Reply (TSecr) [21] in the TCP
option felds are commonly important.

B LIST OF MOBILE APPS
We provide a list of mobile apps selected in our experiments (see
Table 10).

Table 9: 10 most important features of ET-BERT on the Cross-Platform datasets [47].

Cross-Platform (iOS)
Feature Score p-value

Timestamp value (TCP Option) in the frst packet
Timestamp echo reply (TCP Option) in the frst packet

Timestamp echo reply (TCP Option) in the fourth packet
TCP payload in the third packet

Timestamp value (TCP Option) in the third packet
Timestamp value (TCP Option) in the frst packet

Timestamp value (TCP Option) in the second packet
TCP payload in the third packet

Public Key (TLS Client Key Exchange) in the fourth packet
Server name (TLS Client Hello) in the frst packet

0.0046
0.0011
0.0008
0.0007
0.0007
0.0006
0.0006
0.0005
0.0005
0.0005

0.0156
0.1267
0.0516
0.0947
0.0726
0.3336
0.3131
0.2113
0.0995
0.0995

Cross-Platform (Android)
Feature Score p-value

Timestamp value (TCP Option) in the frst packet 0.0027 0.0158
Timestamp echo reply (TCP Option) in the second packet 0.0011 0.0037

Timestamp value (TCP Option) in the third packet 0.0011 0.0997
Timestamp echo reply (TCP Option) in the second packet 0.0009 0.0533

Timestamp value (TCP Option) in the second packet 0.0008 0.2000
Timestamp value (TCP Option) in the fourth packet 0.0008 0.0801
Timestamp value (TCP Option) in the ffth packet 0.0008 0.0947
Timestamp value (TCP Option) in the frst packet 0.0008 0.0959

Timestamp value (TCP Option) in the fourth packet 0.0006 0.1080
Timestamp value (TCP Option) in the fourth packet 0.0005 0.2859

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

AppSniffer: Towards Robust Mobile App Fingerprinting Against VPN WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 10: List of Mobile Apps

No. Package Name Number of Installs No. Package Name Number of Installs

1 com.facebook.lite > 10 billion 76 com.appswing.qr.barcodescanner.barcodereader > 10 million
2 com.google.android.apps.translate > 10 billion 77 com.bestbuy.android > 10 million
3 com.google.android.play.games > 10 billion 78 com.bravo.booster > 10 million
4 com.instagram.android

com.snapchat.android
> 10 billion
> 10 billion

79 com.brighthouse.mybhn
com.cbs.app

> 10 million
> 10 million

6 com.spotify.music > 10 billion 81 com.coinbase.android > 10 million
7 com.zhiliaoapp.musically > 10 billion 82 com.creditkarma.mobile > 10 million
8 com.booking > 500 million 83 com.discovery.discoveryplus.mobile > 10 million
9 com.contextlogic.wish

com.facebook.mlite
> 500 million
> 500 million

84 com.dominospizza
com.doordash.driverapp

> 10 million
> 10 million

11 com.google.android.apps.nbu.paisa.user > 500 million 86 com.etsy.android > 10 million
12 com.picsart.studio > 500 million 87 com.fetchrewards.fetchrewards.hop > 10 million
13 com.pinterest > 500 million 88 com.fortunescope > 10 million
14 com.shazam.android

us.zoom.videomeetings
> 500 million
> 500 million

89 com.google.android.apps.youtube.unplugged
com.grubhub.android

> 10 million
> 10 million

16 com.agminstruments.drumpadmachine > 100 million 91 com.hopper.mountainview.play > 10 million
17 com.airbnb.android > 100 million 92 com.instacart.client > 10 million
18 com.amazon.avod.thirdpartyclient > 100 million 93 com.kohls.mcommerce.opal > 10 million
19 com.audible.application

com.callapp.contacts
> 100 million
> 100 million

94 com.konylabs.capitalone
com.mcdonalds.app

> 10 million
> 10 million

21 com.canva.editor > 100 million 96 com.mercariapp.mercari > 10 million
22 com.cleanteam.oneboost > 100 million 97 com.microsoft.bing > 10 million
23 com.digidust.elokence.akinator.freemium > 100 million 98 com.mistplay.mistplay > 10 million
24 com.discord

com.disney.disneyplus
> 100 million
> 100 million

99 com.myhomescreen.sms
com.myklarnamobile

> 10 million
> 10 million

26 com.duolingo > 100 million 101 com.nbcuni.nbc > 10 million
27 com.ebay.mobile > 100 million 102 com.nextdoor > 10 million
28 com.gamma.scan > 100 million 103 com.nike.omega > 10 million
29 com.google.android.apps.adm

com.google.android.apps.authenticator2
> 100 million
> 100 million

104 com.onedebit.chime
com.peacocktv.peacockandroid

> 10 million
> 10 million

31 com.google.android.apps.chromecast.app > 100 million 106 com.pinger.textfree > 10 million
32 com.google.android.apps.youtube.kids > 100 million 107 com.rf.sams.android > 10 million
33 com.google.earth > 100 million 108 com.ringapp > 10 million
34 com.gotv.nfgamecenter.us.lite

com.hbo.hbonow
> 100 million
> 100 million

109 com.shopify.arrive
com.sirius

> 10 million
> 10 million

36 com.indeed.android.jobsearch > 100 million 111 com.starbucks.mobilecard > 10 million
37 com.lemon.lvoverseas > 100 million 112 com.tacobell.ordering > 10 million
38 com.microsoft.teams > 100 million 113 com.ticketmaster.mobile.android.na > 10 million
39 com.opera.app.news

com.pandora.android
> 100 million
> 100 million

114 com.tool.fast.smart.cleaner
com.united.mobile.android

> 10 million
> 10 million

41 com.paypal.android.p2pmobile > 100 million 116 com.wave.livewallpaper > 10 million
42 com.psafe.msuite > 100 million 117 com.zillow.android.zillowmap > 10 million
43 com.reddit.frontpage > 100 million 118 me.lyft.android > 10 million
44 com.soundcloud.android

com.tinder
> 100 million
> 100 million

119 co.vulcanlabs.rokuremote
com.afrm.central

> 5 million
> 5 million

46 com.tubitv > 100 million 121 com.afterpaymobile.us > 5 million
47 com.ubercab.eats > 100 million 122 com.airgoat.goat > 5 million
48 com.waze > 100 million 123 com.americasbestpics > 5 million
49 com.weather.Weather

com.zzkko
> 100 million
> 100 million

124 com.fandango.regal
com.flemanager.fles.explorer.boost.clean

> 5 million
> 5 million

51 jp.ne.ibis.ibispaintx.app > 100 million 126 com.immediasemi.android.blink > 5 million
52 net.zedge.android > 100 million 127 com.justplay.app > 5 million
53 sg.bigo.live > 100 million 128 com.macys.android > 5 million
54 tv.twitch.android.app

com.amazon.clouddrive.photos
> 100 million
> 50 million

129 com.meetalbert
com.nvidia.geforcenow

> 5 million
> 5 million

56 com.amazon.dee.app > 50 million 131 com.oculus.twilight > 5 million
57 com.apple.android.music > 50 million 132 com.optimizer.pro.beeztel > 5 million
58 com.azure.authenticator > 50 million 133 com.thunderclap.fakecallfromsantavideocallsammy > 5 million
59 com.bumble.app

com.cleanteam.onesecurity
> 50 million
> 50 million

134 com.vrbo.android
us.current.android

> 5 million
> 5 million

61 com.dd.doordash > 50 million 136 com.blockfolio.blockfolio > 1 million
62 com.enfick.android.TextNow > 50 million 137 com.cbs.tve > 1 million
63 com.espn.score_center > 50 million 138 com.engro.cleanerforsns > 1 million
64 com.hp.printercontrol

com.hulu.plus
> 50 million
> 50 million

139 com.home.bible.verse.prayer
com.investvoyager

> 1 million
> 1 million

66 com.microsoft.xboxone.smartglass > 50 million 141 com.love.biremoji > 1 million
67 com.oferup > 50 million 142 com.pointone.buddyglobal > 1 million
68 com.particlenews.newsbreak > 50 million 143 com.vod.vodcy > 1 million
69 com.roku.remote

com.yelp.android
> 50 million
> 50 million

144 com.weatherport.android
org.gamatech.androidclient.app

> 1 million
> 1 million

71 clean.phone.cleaner.boost.security.applock > 10 million 146 org.toshi > 1 million
72 com.aa.android > 10 million 147 com.mwm.beat_looper_pro > 0.5 million
73 com.adpmobile.android > 10 million 148 com.fnnci.fnnci > 0.1 million
74 com.ai.face.play

com.amazon.storm.lightning.client.aosp
> 10 million
> 10 million

149 com.ralphlauren.us.app
com.wodol.dol

> 0.1 million
> 0.1 million

	Abstract
	1 Introduction
	2 Background
	2.1 VPN Protocols
	2.2 Mobile App Fingerprinting Techniques

	3 Limitations of Flow-based Mobile Fingerprinting Systems against VPN
	4 Overview of AppSniffer
	4.1 Threat Model
	4.2 High Level Description of AppSniffer
	4.3 Components of AppSniffer in Detail

	5 Experiments
	5.1 Dataset
	5.2 Experiment Setup
	5.3 Implementation
	5.4 Evaluation

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Feature importance scores of ET-BERT
	B List of Mobile Apps

