
maTLS: How to Make TLS middlebox-aware?

Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae Choi,

Selin Chun, Taejoong Chung, Ted “Taekyoung” Kwon
Seoul National University, University of Luxembourg, Rochester Institute of Technology

Presented at the Network and Distributed System Security Symposium 2019 (NDSS `19)

2 / 141

Overview

In this seminar, I will talk about

* You may refer to https://middlebox-aware-tls.github.io for the detail

3 / 141

Overview

In this seminar, I will talk about

A brief introduction to TLS
(based on TLS 1.2)

* You may refer to https://middlebox-aware-tls.github.io for the detail

4 / 141

Overview

In this seminar, I will talk about

A brief introduction to TLS
(based on TLS 1.2)

Problems in TLS with Middleboxes

* You may refer to https://middlebox-aware-tls.github.io for the detail

5 / 141

Overview

In this seminar, I will talk about

A brief introduction to TLS
(based on TLS 1.2)

Problems in TLS with Middleboxes

Middlebox-aware TLS (maTLS)

with Auditable Middleboxes

* You may refer to https://middlebox-aware-tls.github.io for the detail

6 / 141

A brief introduction to TLS
(based on TLS 1.2)

7 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

8 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

Hello! I’m Alice!

9 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

Hello! I’m Bob!

10 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

11 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

① The peer is intended!

12 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

13 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

② No one can read the message

14 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

② Confidentiality

15 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

② Confidentiality

③ No one can modify the message

16 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

② Confidentiality

③ Integrity

17 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

② Confidentiality

③ Integrity

TLS aims to guarantee

①Authentication

② Confidentiality

③ Integrity

18 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

② Confidentiality

③ Integrity

TLS consists of

19 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

② Confidentiality

③ Integrity

TLS consists of

• TLS handshake protocol
Authentication

Key Establishment

20 / 141

Transport Layer Security

Client
(Alice)

Server
(www.bob.com)

①Authentication

② Confidentiality

③ Integrity

TLS consists of

• TLS handshake protocol
Authentication

Key Establishment

• TLS record protocol Stateful Encryption/Decryption

21 / 141

TLS Handshake Protocol

Client
(Alice)

Server
(www.bob.com)

TLS-DHE 1.2

Sever-only

authentication

Client Hello

Server Hello

Server Certificate

Server Key Exchange

Server Hello Done

Client Key Exchange

Change Cipher Spec

Client Finished

Change Cipher Spec

Server Finished

22 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

23 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Alice wants to talk with

24 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Alice wants to talk with www.bob.com

25 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Alice wants to talk with www.bob.com via HTTPS (HTTP over TLS)

26 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Hello! My random number is 0x12345678

The highest TLS version I can support is 1.3

I can talk with you by using the ciphersuites
AEAD-AES-128-GCM-SHA256, ECDSA-ECDHE-AES-128-GCM-SHA256, …

I support extensions ...

Client Hello

27 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Client Hello

28 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Hello

Hello! My random number is 0x87654321

Let’s use TLS version 1.2 and talk with the ciphersuite

ECDSA-ECDHE-AES-128-GCM-SHA256

I choose the following extensions: SupportedGroups, …

29 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Hello

Server Random:

0x87654321

Server Random:

0x87654321

30 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Certificiate

Server Random:

0x87654321

Server Random:

0x87654321

This is me! I’m Bob to whom you want to access :)

Certificate
CN: *.bob.com
Issuer: ca.comCertificate

CN: *.bob.com
Issuer: ca.com

31 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

Certificate
CN: *.bob.com
Issuer: ca.com

32 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Certificate
CN: *.bob.com
Issuer: ca.com

33 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Key Exchange

Server Random:

0x87654321

Server Random:

0x87654321

For our session key, this is my Diffie-Hellman Key Share

and the signature over the client random, the server

random, and the key share, signed with

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

𝑔𝑏||𝑆𝑖𝑔𝑛(, 𝑐𝑟||𝑠𝑟||𝑔𝑏)

Certificate
CN: *.bob.com
Issuer: ca.com

34 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Certificate
CN: *.bob.com
Issuer: ca.com

Alice authenticates Bob

with Bob’s Certificate,

verifying the signature

35 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Bob’s DH Share: 𝑔𝑏

Certificate
CN: *.bob.com
Issuer: ca.com

36 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Bob’s DH Share: 𝑔𝑏

Server Hello Done

Done!

Certificate
CN: *.bob.com
Issuer: ca.com

37 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Bob’s DH Share: 𝑔𝑏

DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

38 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Bob’s DH Share: 𝑔𝑏

Client Key Exchange

DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

𝑔𝑎

This is my DH key share!

39 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Bob’s DH Share: 𝑔𝑏

DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Alice’s DH Share: 𝑔𝑎

40 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Bob’s DH Share: 𝑔𝑏

DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Alice’s DH Share: 𝑔𝑎

𝑔𝑏
𝑎
= 𝑔𝑎𝑏 𝑔𝑎 𝑏 = 𝑔𝑎𝑏

41 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Client Random:

0x12345678

Client Random:

0x12345678

Server Random:

0x87654321

Server Random:

0x87654321

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)

Bob’s DH Share: 𝑔𝑏

DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Alice’s DH Share: 𝑔𝑎

𝑔𝑏
𝑎
= 𝑔𝑎𝑏 𝑔𝑎 𝑏 = 𝑔𝑎𝑏

Master Secret =

KDF(Client Random, Server Random, 𝑔𝑎𝑏)

* KDF: Key Derivation Function

42 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Master Secret:

0x#2gc2145

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Master Secret =

KDF(Client Random, Server Random, 𝑔𝑎𝑏)
Master Secret:

0x#2gc2145

* KDF: Key Derivation Function

43 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Master Secret:

0x#2gc2145

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Master Secret =

KDF(Client Random, Server Random, 𝑔𝑎𝑏)
Master Secret:

0x#2gc2145

Attacker cannot generate Master Secret

without knowledge of 𝑎 or 𝑏!

* KDF: Key Derivation Function

44 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Master Secret:

0x#2gc2145

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Master Secret:

0x#2gc2145

Change Cipher Spec

Let’s encrypt our message from now!

45 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Master Secret:

0x#2gc2145

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Master Secret:

0x#2gc2145

Client Finished

This is the hash value of our exchanged handshake

messages (Transcript)

Please check if it is right!

46 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Master Secret:

0x#2gc2145

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Master Secret:

0x#2gc2145

Change Cipher Spec

Okay! Let’s encrypt our message from now!

47 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

Master Secret:

0x#2gc2145

Certificate
CN: *.bob.com
Issuer: ca.com

DH Key Pair: (𝑏, 𝑔𝑏)DH Key Pair: (𝑎, 𝑔𝑎)

Certificate
CN: *.bob.com
Issuer: ca.com

Master Secret:

0x#2gc2145

Server Finished

This is the hash value of our exchanged handshake

messages (Transcript)

Please check if it is right!

48 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

49 / 141

TLS Handshake Protocol in Detail

Client
(Alice)

Server
(www.bob.com)

50 / 141

Summary of TLS Handshake Protocol

Client
(Alice)

Server
(www.bob.com)

TLS-DHE 1.2

Sever-only

authentication

Client Hello

Server Hello

Server Certificate

Server Key Exchange

Server Hello Done

Client Key Exchange

Change Cipher Spec

Client Finished

Change Cipher Spec

Server Finished

51 / 141

Summary of TLS Handshake Protocol

Client
(Alice)

Server
(www.bob.com)

TLS-DHE 1.2

Sever-only

authentication

Client Hello

Server Hello

Server Certificate

Server Key Exchange

Server Hello Done

Client Key Exchange

Change Cipher Spec

Client Finished

Change Cipher Spec

Server Finished

1. Exchanges random numbers

2. Negotiates security parameters including

1) TLS version

2) Ciphersuite

3) Extensions

52 / 141

Summary of TLS Handshake Protocol

Client
(Alice)

Server
(www.bob.com)

TLS-DHE 1.2

Sever-only

authentication

Client Hello

Server Hello

Server Certificate

Server Key Exchange

Server Hello Done

Client Key Exchange

Change Cipher Spec

Client Finished

Change Cipher Spec

Server Finished

Server authentication by

1) validating the server’s certificate

2) verifying the server’s signature

53 / 141

Summary of TLS Handshake Protocol

Client
(Alice)

Server
(www.bob.com)

TLS-DHE 1.2

Sever-only

authentication

Client Hello

Server Hello

Server Certificate

Server Key Exchange

Server Hello Done

Client Key Exchange

Change Cipher Spec

Client Finished

Change Cipher Spec

Server Finished

Key exchange and establishment

by using Diffie-Hellman key exchange algorithm

54 / 141

Summary of TLS Handshake Protocol

Client
(Alice)

Server
(www.bob.com)

TLS-DHE 1.2

Sever-only

authentication

Client Hello

Server Hello

Server Certificate

Server Key Exchange

Server Hello Done

Client Key Exchange

Change Cipher Spec

Client Finished

Change Cipher Spec

Server Finished

Key confirmation and transcript verification

55 / 141

TLS Record Protocol

Client
(Alice)

Server
(www.bob.com)

Messages are authenticated encrypted with

Confidentiality

Integrity

56 / 141

Problems in TLS with Middleboxes

57 / 141

Middleboxes

Client
(Alice)

Server
(www.bob.com)

58 / 141

Middleboxes

…

Middlebox

• Web Application Firewalls

• Security Gateways

• Parental Controls

Client
(Alice)

Server
(www.bob.com)

59 / 141

Middlebox

Middleboxes and Transport Layer Security

• Web Application Firewalls

• Security Gateways

• Parental Controls

…

MiddleboxClient
(Alice)

Server
(www.bob.com)

60 / 141

Middlebox

Motivation for SplitTLS

Middlebox

To perform their functions

Middleboxes split the TLS session

• Private key sharing

• Custom root certificate

Client
(Alice)

Server
(www.bob.com)

61 / 141

Session and Segment

To perform their functions

Middleboxes split the TLS session

• Private key sharing

• Custom root certificate

Segment Segment

Session

Middlebox
Client
(Alice)

Server
(www.bob.com)

62 / 141

SplitTLS (1) Private Key Sharing

Certificate
CN: *.bob.com
Issuer: ca.com

Middlebox
Client
(Alice)

Server
(www.bob.com)

63 / 141

SplitTLS (1) Private Key Sharing

Certificate
CN: *.bob.com
Issuer: ca.com

Certificate
CN: *.bob.com
Issuer: ca.com

Server transfers

their private key and certificate

Middlebox
Client
(Alice)

Server
(www.bob.com)

64 / 141

SplitTLS (1) Private Key Sharing

Certificate
CN: *.bob.com
Issuer: ca.com

Certificate
CN: *.bob.com
Issuer: ca.com

Client initiates

a TLS handshake

Middlebox
Client
(Alice)

Server
(www.bob.com)

65 / 141

SplitTLS (1) Private Key Sharing

Certificate
CN: *.bob.com
Issuer: ca.com

Certificate
CN: *.bob.com
Issuer: ca.com

Middlebox initiates

another TLS handshake

Middlebox
Client
(Alice)

Server
(www.bob.com)

66 / 141

SplitTLS (1) Private Key Sharing

Certificate
CN: *.bob.com
Issuer: ca.com

Certificate
CN: *.bob.com
Issuer: ca.com

Middlebox impersonates Server with the tranferred key pair

Middlebox
Client
(Alice)

Server
(www.bob.com)

67 / 141

SplitTLS (1) Private Key Sharing

Certificate
CN: *.bob.com
Issuer: ca.com

Certificate
CN: *.bob.com
Issuer: ca.com

Client believes they have established a TLS session with Server, not Middlebox!

Middlebox
Client
(Alice)

Server
(www.bob.com)

68 / 141

SplitTLS (2) Custom Root Certificate

Certificate
CN: *.bob.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox
Client
(Alice)

Server
(www.bob.com)

69 / 141

SplitTLS (2) Custom Root Certificate

Certificate
CN: *.bob.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox installs

a root certificate in the client

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox
Client
(Alice)

Server
(www.bob.com)

70 / 141

SplitTLS (2) Custom Root Certificate

Certificate
CN: *.bob.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox

Client initiates

a TLS handshake

Client
(Alice)

Server
(www.bob.com)

71 / 141

SplitTLS (2) Custom Root Certificate

Certificate
CN: *.bob.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox initiates

another TLS handshake

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox
Client
(Alice)

Server
(www.bob.com)

72 / 141

SplitTLS (2) Custom Root Certificate

Certificate
CN: *.bob.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Forged
Certificate
CN: *.bob.com

Issuer: mitm.com Generate a forged certificate

with the name, alice.com

Sign!

Middlebox impersonates Server with the forged key pair

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox
Client
(Alice)

Server
(www.bob.com)

73 / 141

SplitTLS (2) Custom Root Certificate

Certificate
CN: *.bob.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Forged
Certificate
CN: *.bob.com

Issuer: mitm.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox
Client
(Alice)

Server
(www.bob.com)

74 / 141

SplitTLS (2) Custom Root Certificate

Certificate
CN: *.bob.com
Issuer: ca.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Forged
Certificate
CN: *.bob.com

Issuer: mitm.com

Custom
Root Certificate

CN: mitm.com
Issuer: mitm.com

Middlebox

Client believes they have established a TLS session with Server, not Middlebox!

Client
(Alice)

Server
(www.bob.com)

75 / 141

Problems in SplitTLS

No information for Client

Middlebox
Client
(Alice)

Server
(www.bob.com)

• Killed by Proxy: Analyzing Client-end TLS Interception Software (NDSS `16)

• The Security Impact of HTTPS Interception (NDSS `17)

• To Intercept or Not to Intercept: Analyzing TLS Interception in Network Appliances (AsiaCCS `18)

76 / 141

Problems in SplitTLS - Authentication

www.bob.com

Authentication Client does not authenticate Server

Middlebox
Client
(Alice)

Server
(www.bob.com)

www.bob.com

77 / 141

Problems in SplitTLS - Authentication

Expired
Certificate
CN: *.bob.com
Issuer: ca.com

Not Expired
Forged Certificate

CN: *.bob.com
Issuer: mitm.com

Authentication Client does not authenticate Server

Middlebox
Client
(Alice)

Server
(www.bob.com)

78 / 141

Not Expired
Forged Certificate

CN: *.bob.com
Issuer: mitm.com

Problems in SplitTLS - Authentication

Authentication Client does not authenticate Server

Middlebox

Expired
Certificate
CN: *.bob.com
Issuer: ca.com

Client
(Alice)

Server
(www.bob.com)

79 / 141

Problems in SplitTLS - Confidentiality

Authentication Client does not authenticate Server

Confidentiality

Middlebox

Client does not know whether or not the segment is

encrypted with a strong ciphersuite

Client
(Alice)

Server
(www.bob.com)

80 / 141

Problems in SplitTLS - Confidentiality

RC4 or SHA-1?

Authentication Client does not authenticate Server

Confidentiality

Middlebox

Client does not know whether or not the segment is

encrypted with a strong ciphersuite

Client
(Alice)

Server
(www.bob.com)

81 / 141

Problems in SplitTLS - Confidentiality

Authentication Client does not authenticate Server

Confidentiality

Middlebox

RC4 or SHA-1?

Client does not know whether or not the segment is

encrypted with a strong ciphersuite

Client
(Alice)

Server
(www.bob.com)

82 / 141

Problems in SplitTLS - Integrity

Authentication Client does not authenticate Server

Confidentiality

Integrity

Middlebox

Client cannot confirm that Server sent the message,

or which middleboxes have modified it

Client does not know whether or not the segment is

encrypted with a strong ciphersuite

Client
(Alice)

Server
(www.bob.com)

83 / 141

Problems in SplitTLS - Integrity

Middlebox inserts the unwanted script!

Authentication Client does not authenticate Server

Confidentiality

Integrity

Middlebox

Client cannot confirm that Server sent the message,

or which middleboxes have modified it

Client does not know whether or not the segment is

encrypted with a strong ciphersuite

Client
(Alice)

Server
(www.bob.com)

84 / 141

Problems in SplitTLS - Integrity

Authentication Client does not authenticate Server

Confidentiality

Integrity

Client believes Server sent

Middlebox

Client cannot confirm that Server sent the message,

or which middleboxes have modified it

Client does not know whether or not the segment is

encrypted with a strong ciphersuite

Client
(Alice)

Server
(www.bob.com)

85 / 141

Middlebox-aware TLS (maTLS)

with Auditable Middleboxes

86 / 141

Goal: Middlebox-aware TLS (maTLS)

Problems in SplitTLS Solution in maTLS

Authentication
Client can’t authenticate

Server
Explicit Authentication

Confidentiality

Client can’t know if each of

the segments has been

encrypted with strong

ciphersuites

Security Parameter

Verification

Integrity

Client can’t confirm (1) who

actually sent the message (2)

if it has been modified

Valid Modification Checks

Establish a secure session with middleboxes

as well as overcoming the challenges in SplitTLS

87 / 141

Goal: Middlebox-aware TLS (maTLS)

Problems in SplitTLS Solution in maTLS

Authentication
Client cannot authenticate

Server (as well as Middlebox)
Explicit Authentication

Confidentiality

Client can’t know if each of

the segments has been

encrypted with strong

ciphersuites

Security Parameter

Verification

Integrity

Client can’t confirm (1) who

actually sent the message (2)

if it has been modified

Valid Modification Checks

Establish a secure session with middleboxes

as well as overcoming the challenges in SplitTLS

88 / 141

Goal: Middlebox-aware TLS (maTLS)

Problems in SplitTLS Solution in maTLS

Authentication
Client cannot authenticate

Server (as well as Middlebox)
Explicit Authentication

Confidentiality

Client cannot know if each

of the segments has been

encrypted with strong

ciphersuites

Security Parameter

Verification

Integrity

Client can’t confirm (1) who

actually sent the message (2)

if it has been modified

Valid Modification Checks

Establish a secure session with middleboxes

as well as overcoming the challenges in SplitTLS

89 / 141

Goal: Middlebox-aware TLS (maTLS)

Problems in SplitTLS Solution in maTLS

Authentication
Client cannot authenticate

Server (as well as Middlebox)
Explicit Authentication

Confidentiality

Client cannot know if each

of the segments has been

encrypted with strong

ciphersuites

Security Parameter

Verification

Integrity

Client cannot confirm (1)

who actually sent the

message (2) and whether it

has been modified

Valid Modification Checks

Establish a secure session with middleboxes

as well as overcoming the challenges in SplitTLS

90 / 141

Auditable Middleboxes

Certificate

Authority

Middlebox

Transparency

Log Server

Auditable Middleboxes

Middleboxes that have their own middlebox certificates

logged in a middlebox transparency log server

Middlebox

(mb.com)

Middlebox
Certificate
CN: mb.com

Issuer: ca.com

Middlebox
Certificate
CN: mb.com

Issuer: ca.com

91 / 141

Auditable Middleboxes

Certificate

Authority

Middlebox

Transparency

Log Server
Middlebox
Certificate
CN: mb.com

Issuer: ca.com

Middlebox

(mb.com)

Information about Middlebox

• Type of Service

• URL

• Permission

92 / 141

Auditable Middleboxes

Certificate

Authority

Middlebox

Transparency

Log Server

Middlebox
Certificate
CN: mb.com

Issuer: ca.com

Middlebox

(mb.com)

Middlebox
Certificate
CN: mb.com

Issuer: ca.com

93 / 141

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

94 / 141

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

Middleboxes now have their own key pairs and do not need to

impersonate others (in TLS)

95 / 141

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

Anyone can know the name and properties of a middlebox from its

middlebox certificate

Middleboxes now have their own key pairs and do not need to

impersonate others (in TLS)

96 / 141

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

Any interested parties can check for fraudulent certificates using the

middlebox transparency system

Anyone can know the name and properties of a middlebox from its

middlebox certificate

Middleboxes now have their own key pairs and do not need to

impersonate others (in TLS)

97 / 141

Advantages of Auditable Middleboxes

No impersonation

Awareness

Auditability

Revocability

Any incorrect middleboxes can be blocked following the certificate

revocation mechanisms (e.g., CRL or OCSP)

Any interested parties can check for fraudulent certificates using the

middlebox transparency system

Anyone can know the name and properties of a middlebox from its

middlebox certificate

Middleboxes now have their own key pairs and do not need to

impersonate others (in TLS)

98 / 141

MiddleboxClient Server

Security Goals of maTLS

Certificate
CN: alice.com

Issuer: ca2.com

Server Authentication

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Middlebox Authentication

Segment Secrecy

Individual Secrecy

Data Source Authentication

Modification Accountability

Path Integrity

99 / 141

Security Goals of maTLS - Authentication

Server Authentication

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

100 / 141

Security Goals of maTLS - Authentication

Server Authentication

Middlebox Authentication

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

101 / 141

Audit Mechanism for Authentication

Server Authentication

Middlebox Authentication

Explicit Authentication

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

102 / 141

Explicit Authentication

Certificate Blocks Each entity sends its certificate (with its signed certificate timestamp)

MiddleboxClient Server

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Certificate
CN: alice.com

Issuer: ca2.com

No impersonation

103 / 141

Explicit Authentication

Certificate Blocks Each entity sends its certificate (with its signed certificate timestamp)

MiddleboxClient Server

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Certificate
CN: alice.com

Issuer: ca2.com

No impersonation

EV certificates, DANE, and CT can be supported
EV certificates: extended validation certificates

DANE: DNS-based Authentication of Named Entities (RFC 6698)

CT: Certificate Transparency (RFC 6962)

104 / 141

Security Goals of maTLS - Confidentiality

Segment Secrecy

High TLS version

with strong ciphersuite

High TLS version

with strong ciphersuite

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

105 / 141

Security Goals of maTLS - Confidentiality

Segment Secrecy

Individual Secrecy

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

106 / 141

Why Individual Secrecy?

It is known that initialization vector should not be reused

Without Individual Secrecy, confidentiality is undermined

This happened when the same keystream is used across the session and

the middlebox modified the message

Middlebox𝐶1 𝐶2

The same keystream with

the different message

It is desirable to use different segment keys across the session

107 / 141

Audit Mechanism for Confidentiality

Segment Secrecy

Individual Secrecy

Security Parameter

Verification

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

108 / 141

MiddleboxClient Server

Security Parameter Verification

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Security

Parameter Blocks
Each entity describes information about its related segment(s)

109 / 141

MiddleboxClient Server

Security Parameter Verification

Version: TLS 1.3

Ciphersuite:

AEAD-AES256-

SHA256

Transcript of Handshake

Hash of Master Secret

Security

Parameter Blocks
Each entity describes information about its related segment(s)

TLS version

Ciphersuite

Transcript of Handshake

Hash of Master Secret

Segment Secrecy

Individual Secrecy

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

110 / 141

MiddleboxClient Server

Security Parameter Verification

Security

Parameter Blocks
Each entity describes information about its related segment(s)

Version,

Ciphersuite,

…

TLS version

Ciphersuite

Transcript of Handshake

Hash of Master Secret

Segment Secrecy

Individual Secrecy

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

No low TLS versions and weak ciphersuites

Report

111 / 141

MiddleboxClient Server

Security Parameter Verification

Security

Parameter Blocks
Each entity describes information about its related segment(s)

TLS version

Ciphersuite

Transcript of Handshake

Hash of Master Secret

Segment Secrecy

Individual Secrecy

No low TLS versions and weak ciphersuites

Report

Confirmation of different segment keys

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

112 / 141

Security Goals of maTLS - Integrity

Data Source Authentication

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com
The message is

from Server

113 / 141

Security Goals of maTLS - Integrity

Data Source Authentication

Modification Accountability

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com
The message has been

modified by Middlebox

114 / 141

Security Goals of maTLS - Integrity

Data Source Authentication

Modification Accountability

Path Integrity

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com
The message has passed

through the established order

115 / 141

Why Path Integrity?

AnonymizerClient ServerFirewall

FirewallClient ServerAnonymizer

Message Flow

The data is anonymized and then the firewall read it

The firewall read the data and then it is anonymized

116 / 141

Audit Mechanism for Integrity

Data Source Authentication

Modification Accountability
Valid Modification

Checks

Path Integrity

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

117 / 141

MiddleboxClient Server

Valid Modification Checks

Modification Log

Blocks

Each entity describes information about its modification by using

HMAC (The HMAC key is called an accountability key)

𝑚0 𝑚0 𝑚1 𝑚1

Message flow

ID: Server

Prior Hash: none

HMAC(none||H(𝑚1))

𝑚 → 𝑚′ ID 𝐻(𝑚) 𝐻𝑀𝐴𝐶(𝐻 𝑚′ ||𝐻 𝑚)

* Optimization on a Modification Log is described in the paper

118 / 141

MiddleboxClient Server

Valid Modification Checks

Modification Log

Blocks

𝑚0 𝑚0 𝑚1 𝑚1

Message flow

𝑚 → 𝑚′ ID 𝐻(𝑚) 𝐻𝑀𝐴𝐶(𝐻 𝑚′ ||𝐻 𝑚)

ID: Middlebox

Prior Hash: H(𝑚1)

HMAC(H(𝑚0)||H(𝑚1))

* Optimization on a Modification Log is described in the paper

Each entity describes information about its modification by using

HMAC (The HMAC key is called an accountability key)

ID: Server

Prior Hash: none

HMAC(H(𝑚1)||none)

119 / 141

MiddleboxClient Server

Valid Modification Checks

Modification Log

Blocks

𝑚0 𝑚0 𝑚1 𝑚1

Message flow

𝑚 → 𝑚′ ID 𝐻(𝑚) 𝐻𝑀𝐴𝐶(𝐻 𝑚′ ||𝐻 𝑚)

ID: Middlebox

Prior Hash: H(𝑚1)

HMAC(H(𝑚0)||H(𝑚1))

Confirmation of who sends and who modifies the message

Report

ID: Server

Prior Hash: none

HMAC(H(𝑚1)||none)

* Optimization on a Modification Log is described in the paper

Each entity describes information about its modification by using

HMAC (The HMAC key is called an accountability key)

120 / 141

MiddleboxClient Server

Valid Modification Checks

Modification Log

Blocks

𝑚0 𝑚0 𝑚1 𝑚1

Message flow

𝑚 → 𝑚′ ID 𝐻(𝑚) 𝐻𝑀𝐴𝐶(𝐻 𝑚′ ||𝐻 𝑚)

Confirmation of who sends and who modifies the message

Report

Confirmation of the order of middleboxes

ID: Middlebox

Prior Hash: H(𝑚1)

HMAC(H(𝑚0)||H(𝑚1))

ID: Server

Prior Hash: none

HMAC(H(𝑚1)||none)

* Optimization on a Modification Log is described in the paper

Each entity describes information about its modification by using

HMAC (The HMAC key is called an accountability key)

121 / 141

Summary of Audit Mechanisms

Explicit

Authentication

Server Authentication

Middlebox Authentication

Server Certificate and

Middlebox Certificates

(with their signed

certificate timestamps)

122 / 141

Summary of Audit Mechanisms

Explicit

Authentication

Security Parameter

Verification

Server Authentication

Middlebox Authentication

Segment Secrecy

Individual Secrecy

Security Information

Blocks

Server Certificate and

Middlebox Certificates

(with their signed

certificate timestamps)

123 / 141

Summary of Audit Mechanisms

Explicit

Authentication

Security Parameter

Verification

Valid Modification

Checks

Server Authentication

Middlebox Authentication

Segment Secrecy

Individual Secrecy

Data Source Authentication

Modification Accountability

Path Integrity

Security Information

Blocks

Modification Log Blocks

Server Certificate and

Middlebox Certificates

(with their signed

certificate timestamps)

124 / 141

maTLS Handshake

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

125 / 141

maTLS Handshake

alice.com

ClientHello and ServerHello,

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

MATLS

alice.com

MATLS

126 / 141

maTLS Handshake

ClientHello and ServerHello,
Each segment negotiates its TLS version and ciphersuite

Each entity establishes HMAC keys (accountability keys)

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

MATLS MATLS

127 / 141

MiddleboxClient Server

maTLS Handshake

ClientHello and ServerHello,

Certificate, Explicit Authentication

Each segment negotiates its TLS version and ciphersuite

Each entity establishes HMAC keys (accountability keys)

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Certificate
CN: alice.com

Issuer: ca2.com

128 / 141

maTLS Handshake

ClientHello and ServerHello,

Certificate, Explicit Authentication

ServerKeyExchange and ClientKeyExchange,

Each segment establishes its master secret

MiddleboxClient Server

Certificate
CN: alice.com

Issuer: ca2.com

Middlebox
Certificate
CN: mb.com

Issuer: ca1.com

Each segment negotiates its TLS version and ciphersuite

Each entity establishes HMAC keys (accountability keys)

129 / 141

MiddleboxClient Server

maTLS Handshake

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Finished
Each segment confirms the transcript of their handshake

130 / 141

MiddleboxClient Server

maTLS Handshake

Finished

ExtendedFinished Security Parameter Verification

Each segment confirms the transcript of their handshake

Version: TLS 1.3

Ciphersuite:

AEAD-AES256-

SHA256

Transcript of Handshake

Hash of Master Secret

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

Version,

Ciphersuite,

…

131 / 141

MiddleboxClient Server

maTLS Record

𝑚0 𝑚0 𝑚1 𝑚1

ID: Middlebox

Prior Hash: H(𝑚0)

HMAC(H(𝑚1)||H(𝑚0))

* Optimization on a Modification Log is described in the paper

Data Exchange Valid Modification Checks

Message flow

ID: Client

Prior Hash: none

HMAC(H(𝑚0)||none)

132 / 141

MiddleboxClient Server

maTLS Record

𝑚0′ 𝑚0′ 𝑚1′ 𝑚1′

* Optimization on a Modification Log is described in the paper

Data Exchange Valid Modification Checks

Message flow

ID: Middlebox

Prior Hash: H(𝑚1′)
HMAC(H(𝑚0′)||H(𝑚1′))

ID: Server

Prior Hash: none

HMAC(H(𝑚1′)||none)

133 / 141

Security Verification

* The implementation can be found at https://github.com/middlebox-aware-tls/matls-tamarin.git

Security verification of maTLS through Tamarin

Dolev-Yao adversary

Can capture all the messages delivered on the air

Can insert/drop/alter/reorder messages

Can corrupt long-term keys

Seven lemmas (security goals in first-order logic)

Example of

Server Authentication

The result shows that the maTLS protocol is secure

134 / 141

Evaluation Setting

All the applications are implemented in C with OpenSSL (for maTLS)

Client
Client-side

Middlebox

Server-side

Middlebox
Server

Located in

Seoul National University

Located in

1) AWS Seoul (Intra-Country)

2) AWS Tokyo (Intra-Region)

3) AWS Virginia (Inter-Region)

* The implementation can be found at https://github.com/middlebox-aware-tls/matls-implementation.git

Server and Server-side Middlebox: Intel Xeon CPU E5-3676 at 2.40GHz with 1GB Memory

Client: Intel Broadwell CPU at 3.30GHz with 1GB Memory

Client-side Middlebox: Intel Core i7 at 2.30GHz with 1GB Memory

135 / 141

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

 HTTP Load Time: The TLS handshake and the HTTP message exchange

(GET and RESPONSE)

 Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

136 / 141

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

 HTTP Load Time: The TLS handshake and the HTTP message exchange

(GET and RESPONSE)

 Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

The maTLS protocol introduces a slight delay

(10.22ms – 32.52ms) compared to SplitTLS and mcTLS

137 / 141

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

 HTTP Load Time: The TLS handshake and the HTTP message exchange

(GET and RESPONSE)

 Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

Three schemes show similar delay time for

data transfer.

138 / 141

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

 HTTP Load Time: The TLS handshake and the HTTP message exchange

(GET and RESPONSE)

 Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

We conclude that the maTLS overhead is mainly

due to the setup of an maTLS session

139 / 141

Evaluation – HTTP Load Time

HTTP Load Time Data Transfer Time

 HTTP Load Time: The TLS handshake and the HTTP message exchange

(GET and RESPONSE)

 Data Transfer Time: Only the HTTP message exchange (GET and RESPONSE)

Once the session is established,

maTLS provides similar performance to the others

while preserving all security merits that we have discussed

140 / 141

Summary of maTLS

Auditable Middlebox

Middlebox Certificate

Explicit Authentication

Middlebox Transparency System

Middlebox-aware TLS (maTLS)

Security Parameter Verification

Valid Modification Checks

SplitTLS is risky

Client is forced to fully trust behavior of middleboxes

Client is not aware of the middleboxes involved

141 / 141

fin.

email: hwlee2014@mmlab.snu.ac.kr

project webpage: https://middlebox-aware-tls.github.io

source code: https://github.com/middlebox-aware-tls

142 / 141

Backup Slides

143 / 141

Why Middleboxes?

Acceptable Use Policy

Marware and Threat Protection

IoT Endpoint Protection

Unpatched Endpoint Protection

Crypto Security Audit

…

* I get the use cases from a draft of the RFC document titled “TLS 1.3 Impact on Network-Based Security”

144 / 141

Session Establishment Approach (1)

Top-down approach

MiddleboxClient Server

MiddleboxClient Server

Server determines a TLS version, a ciphersuite, and extensions

145 / 141

Session Establishment Approach (2)

Bottom-up approach

MiddleboxClient Server

MiddleboxClient Server

A TLS version, a ciphersuite, and extensions are selected on a segment

basis

146 / 141

Difference from mcTLS

maTLS establishes different segment keys in different

segments

The same keystream is used across the session, which might undermine

the confidentiality of the session

mcTLS does not achieves Individual Secrecy

maTLS allows a partial maTLS session

Since the server determines the extensions among the “intersection” of

the supported extensions by all the entities

mcTLS requires all the entities support the protocol

147 / 141

Evaluation – Scalability of Three Audit Mechanisms

SPV: Security Parameter Verification / EA: Explicit Authentication / VMC: Valid Modification Checks

148 / 141

Evaluation – Scalability of Three Audit Mechanisms

SPV: Security Parameter Verification / EA: Explicit Authentication / VMC: Valid Modification Checks

0.063ms per

middlebox

0.045ms per

middlebox

0.026ms for 8

middleboxes

149 / 141

Evaluation – Scalability of Three Audit Mechanisms

SPV: Security Parameter Verification / EA: Explicit Authentication / VMC: Valid Modification Checks

We conclude that the audit mechanisms can achieve

their goals without incurring a substantial delay

150 / 141

Modification Log

• End point: Server, Client, or a valid end-point middlebox such as a cache proxy

• Writer: HTTP Header Enrichment, Optimizer (adding JavaScript) (𝑚 → 𝑚′)

𝐻(𝑎𝑘𝑠,𝑐 , 𝐻(𝑚))

𝐻(𝑘,𝑚): The keyed hash function with 𝑘, applying to 𝑚
𝐻(𝑚): The hash function, applying to 𝑚

𝑚

• A series of HMACs

𝐼𝐷𝑚𝑏 modifies 𝑚 into 𝑚’

𝑎𝑘𝑠,𝑐: Server’s accountability key

𝑎𝑘𝑚,𝑐: MB’s accountability key (with client)

𝐼𝐷𝑠

𝐻(𝑎𝑘𝑠,𝑐 , 𝐻(𝑚))𝑚′ 𝐼𝐷𝑠 𝐼𝐷𝑚𝑏 𝐻(𝑚) 𝐻(𝑎𝑘𝑚,𝑐 , 𝐻 𝑚′ ||𝐻(𝑚))

151 / 141

Modification Log Verification

Client knows

• 𝑎𝑘𝑠,𝑐: The accountability key with the server

• 𝑎𝑘𝑚,𝑐: The accountability key with the MB

𝐻(𝑎𝑘𝑠,𝑐 , 𝐻(𝑚))𝑚′ 𝐼𝐷𝑠 𝐼𝐷𝑚𝑏 𝐻(𝑚) 𝐻(𝑎𝑘𝑚,𝑐 , 𝐻 𝑚′ ||𝐻(𝑚))

ServerMBClient 𝑚𝑚′

152 / 141

Modification Log Verification

Client knows

• 𝑎𝑘𝑠,𝑐: The accountability key with the server

• 𝑎𝑘𝑚,𝑐: The accountability key with the MB

• 𝐻(𝑚′): The hash value of the received message

𝐻(𝑎𝑘𝑠,𝑐 , 𝐻(𝑚))𝑚′ 𝐼𝐷𝑠 𝐼𝐷𝑚𝑏 𝐻(𝑚) 𝐻(𝑎𝑘𝑚,𝑐 , 𝐻 𝑚′ ||𝐻(𝑚))

ServerMBClient 𝑚𝑚′

By hashing the received

message, the client can

know 𝐻(𝑚′)

153 / 141

Modification Log Verification

𝐻(𝑎𝑘𝑠,𝑐 , 𝐻(𝑚))𝑚′ 𝐼𝐷𝑠 𝐼𝐷𝑚𝑏 𝐻(𝑚) 𝐻(𝑎𝑘𝑚,𝑐 , 𝐻 𝑚′ ||𝐻(𝑚))

ServerMBClient 𝑚𝑚′

From the ID, the client

can find the 𝑎𝑘𝑚,𝑐

Client knows

• 𝑎𝑘𝑠,𝑐: The accountability key with the server

• 𝑎𝑘𝑚,𝑐: The accountability key with the MB

• 𝐻(𝑚′): The hash value of the received message

154 / 141

Modification Log Verification

𝐻(𝑎𝑘𝑠,𝑐 , 𝐻(𝑚))𝑚′ 𝐼𝐷𝑠 𝐼𝐷𝑚𝑏 𝐻(𝑚) 𝐻(𝑎𝑘𝑚,𝑐 , 𝐻 𝑚′ ||𝐻(𝑚))

ServerMBClient 𝑚𝑚′

From these hashes, the client can

confirm MB modifies 𝑚 into 𝑚’

Client knows

• 𝑎𝑘𝑠,𝑐: The accountability key with the server

• 𝑎𝑘𝑚,𝑐: The accountability key with the MB

• 𝐻(𝑚′): The hash value of the received message

155 / 141

Modification Log Verification

𝐻(𝑎𝑘𝑠,𝑐 , 𝐻(𝑚))𝑚′ 𝐼𝐷𝑠 𝐼𝐷𝑚𝑏 𝐻(𝑚) 𝐻(𝑎𝑘𝑚,𝑐 , 𝐻 𝑚′ ||𝐻(𝑚))

ServerMBClient 𝑚𝑚′

From this hash, the client can confirm the

server generates 𝑚,

even though the client cannot confirm 𝑚 itself

Client knows

• 𝑎𝑘𝑠,𝑐: The accountability key with the server

• 𝑎𝑘𝑚,𝑐: The accountability key with the MB

• 𝐻(𝑚′): The hash value of the received message

156 / 141

Modification Log Verification

𝐻(𝑎𝑘𝑠,𝑐 , 𝐻(𝑚))𝑚′ 𝐼𝐷𝑠 𝐼𝐷𝑚𝑏 𝐻(𝑚) 𝐻(𝑎𝑘𝑚,𝑐 , 𝐻 𝑚′ ||𝐻(𝑚))

ServerMBClient 𝑚𝑚′

From two verifications, the client

can confirm the server generates 𝑚
and mb changes it into 𝑚’, without

any invalid modification

Client knows

• 𝑎𝑘𝑠,𝑐: The accountability key with the server

• 𝑎𝑘𝑚,𝑐: The accountability key with the MB

• 𝐻(𝑚′): The hash value of the received message

